Skip to main content

Advertisement

Log in

Alcanivorax profundimaris sp. nov., a Novel Marine Hydrocarbonoclastic Bacterium Isolated from Seawater and Deep-Sea Sediment

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Two novel Alcanivorax-related strains, designated ST75FaO-1T and 521-1, were isolated from the seawater of the South China Sea and the deep-sea sediment of the West Pacific Ocean, respectively. Both strains are Gram-stain-negative, rod-shaped, and non-motile, and grow at 10–40 °C, pH 5.0–10.0, in the presence of 1.0–15.0% (w/v) NaCl. Their 16S rRNA gene sequences showed 99.9% similarity. Phylogenetic analysis based on the 16S rRNA gene sequences indicated that both strains belong to the genus Alcanivorax, and share 92.9–98.1% sequence similarity with all valid type strains of this genus, with the highest similarity being to type strain Alcanivorax venustensis DSM 13974T (98.0–98.1%). Digital DNA–DNA hybridization (dDDH) and average nucleotide identity values between strains ST75FaO-1T and 521-1 were 75.7% and 97.1%, respectively, while the corresponding values with A. venustensis DSM 13974T were only 25.4–25.6% and 82.4–82.7%, respectively. The two strains contained similar major cellular fatty acids including C16:0, C18:1 ω7c/ω6c, C19:0 cyclo ω8c, C16:1 ω7c/ω6c, C12:0 3-OH, and C12:0. The genomic G + C content of strains ST75FaO-1T and 521-1 were 66.3% and 66.1%, respectively. Phosphatidylglycerol, phosphatidylethanolamine, two unidentified phospholipids, and one unidentified polar lipid were present in both strains. On the basis of phenotypic and genotypic characteristics, the two strains represent a novel species within the genus Alcanivorax, for which the name Alcanivorax profundimaris sp. nov. is proposed. The type strain is ST75FaO-1T (= MCCC 1A17714T = KCTC 82142T).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Yakimov MM, Timmis KN, Golyshin PN (2007) Obligate oil-degrading marine bacteria. Curr Opin Biotechnol 18:257–266. https://doi.org/10.1016/j.copbio.2007.04.006

    Article  CAS  PubMed  Google Scholar 

  2. Yakimov MM, Golyshin PN, Lang S, Moore ER, Abraham WR, Lunsdorf H, Timmis KN (1998) Alcanivorax borkumensis gen. nov., sp. nov., a new, hydrocarbon-degrading and surfactant-producing marine bacterium. Int J Syst Bacteriol 48:339–348. https://doi.org/10.1099/00207713-48-2-339

    Article  CAS  PubMed  Google Scholar 

  3. Fernandez-Martinez J, Pujalte MJ, Garcia-Martinez J, Mata M, Garay E, Rodriguez-Valeral F (2003) Description of Alcanivorax venustensis sp. nov. and reclassification of Fundibacter jadensis DSM 12178T (Bruns and Berthe-Corti 1999) as Alcanivorax jadensis comb. nov., members of the emended genus Alcanivorax. Int J Syst Evol Microbiol 53:331–338. https://doi.org/10.1099/ijs.0.01923-0

    Article  CAS  PubMed  Google Scholar 

  4. Rivas R, Garcia-Fraile P, Peix A, Mateos PF, Martinez-Molina E, Velazquez E (2007) Alcanivorax balearicus sp. nov., isolated from Lake Martel. Int J Syst Evol Microbiol 57:1331–1335. https://doi.org/10.1099/ijs.0.64912-0

    Article  CAS  PubMed  Google Scholar 

  5. Bruns A, Berthe-Corti L (1999) Fundibacter jadensis gen. nov., sp. nov., a new slightly halophilic bacterium, isolated from intertidal sediment. Int J Syst Bacteriol 49:441–448. https://doi.org/10.1099/00207713-49-2-441

    Article  PubMed  Google Scholar 

  6. Liu C, Shao Z (2005) Alcanivorax dieselolei sp. nov., a novel alkane-degrading bacterium isolated from sea water and deep-sea sediment. Int J Syst Evol Microbiol 55:1181–1186. https://doi.org/10.1099/ijs.0.63443-0

    Article  CAS  PubMed  Google Scholar 

  7. Wu Y, Lai Q, Zhou Z, Qiao N, Liu C, Shao Z (2009) Alcanivorax hongdengensis sp. nov., an alkane-degrading bacterium isolated from surface seawater of the straits of Malacca and Singapore, producing a lipopeptide as its biosurfactant. Int J Syst Evol Microbiol 59:1474–1479. https://doi.org/10.1099/ijs.0.001552-0

    Article  CAS  PubMed  Google Scholar 

  8. Lai Q, Wang L, Liu Y, Fu Y, Zhong H, Wang B, Chen L, Wang J, Sun F, Shao Z (2011) Alcanivorax pacificus sp. nov., isolated from a deep-sea pyrene-degrading consortium. Int J Syst Evol Microbiol 61:1370–1374. https://doi.org/10.1099/ijs.0.022368-0

    Article  CAS  PubMed  Google Scholar 

  9. Lai Q, Wang J, Gu L, Zheng T, Shao Z (2013) Alcanivorax marinus sp. nov., isolated from deep-sea water. Int J Syst Evol Microbiol 63:4428–4432. https://doi.org/10.1099/ijs.0.049957-0

    Article  CAS  PubMed  Google Scholar 

  10. Rahul K, Sasikala C, Tushar L, Debadrita R, Ramana CV (2014) Alcanivorax xenomutans sp. nov., a hydrocarbonoclastic bacterium isolated from a shrimp cultivation pond. Int J Syst Evol Microbiol 64:3553–3558. https://doi.org/10.1099/ijs.0.061168-0

    Article  CAS  PubMed  Google Scholar 

  11. Kyoung Kwon K, Hye Oh J, Yang SH, Seo HS, Lee JH (2015) Alcanivorax gelatiniphagus sp. nov., a marine bacterium isolated from tidal flat sediments enriched with crude oil. Int J Syst Evol Microbiol 65:2204–2208. https://doi.org/10.1099/ijs.0.000244

    Article  CAS  PubMed  Google Scholar 

  12. Lai Q, Zhou Z, Li G, Li G, Shao Z (2016) Alcanivorax nanhaiticus sp. nov., isolated from deep sea sediment. Int J Syst Evol Microbiol 66:3651–3655. https://doi.org/10.1099/ijsem.0.001247

    Article  CAS  PubMed  Google Scholar 

  13. Liu J, Ren Q, Zhang Y, Li Y, Tian X, Wu Y, Tian J, Zhang XH (2018) Alcanivorax profundi sp. nov., isolated from deep seawater of the Mariana Trench. Int J Syst Evol Microbiol 69:371–376. https://doi.org/10.1099/ijsem.0.003145

    Article  CAS  PubMed  Google Scholar 

  14. Song L, Liu H, Cai S, Huang Y, Dai X, Zhou Y (2018) Alcanivorax indicus sp. nov., isolated from seawater. Int J Syst Evol Microbiol 68:3785–3789. https://doi.org/10.1099/ijsem.0.003058

    Article  CAS  PubMed  Google Scholar 

  15. Yang S, Li M, Lai Q, Li G, Shao Z (2018) Alcanivorax mobilis sp. nov., a new hydrocarbon-degrading bacterium isolated from deep-sea sediment. Int J Syst Evol Microbiol 68:1639–1643. https://doi.org/10.1099/ijsem.0.002612

    Article  CAS  PubMed  Google Scholar 

  16. Dyksterhouse SE, Gray JP, Herwig RP, Lara JC, Staley JT (1995) Cycloclasticus pugetii gen. nov., sp. nov., an aromatic hydrocarbon-degrading bacterium from marine sediments. Int J Syst Bacteriol 45:116–123. https://doi.org/10.1099/00207713-45-1-116

    Article  CAS  PubMed  Google Scholar 

  17. Wang B, Lai Q, Cui Z, Tan T, Shao Z (2008) A pyrene-degrading consortium from deep-sea sediment of the West Pacific and its key member Cycloclasticus sp. P1. Environ Microbiol 10:1948–1963. https://doi.org/10.1111/j.1462-2920.2008.01611.x

    Article  CAS  PubMed  Google Scholar 

  18. Dong X, Cai M (2001) Determinative manual for routine bacteriology. Scientific Press, Beijing

    Google Scholar 

  19. Dong C, Liu R, Lai Q, Liu Y, Shao Z (2018) Thalassospira marina sp. nov., isolated from surface seawater. Int J Syst Evol Microbiol 68:2943–2948. https://doi.org/10.1099/ijsem.0.002925

    Article  CAS  PubMed  Google Scholar 

  20. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y, Seo H, Chun J (2017) Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 67:1613–1617. https://doi.org/10.1099/ijsem.0.001755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  22. Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376

    Article  CAS  PubMed  Google Scholar 

  23. Rzhetsky A, Nei M (1992) A simple method for estimating and testing minimum-evolution trees. Mol Biol Evol 9:945–967

    CAS  Google Scholar 

  24. Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

    Article  CAS  PubMed  Google Scholar 

  25. Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis Version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874. https://doi.org/10.1093/molbev/msw054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW (2015) CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 25:1043–1055. https://doi.org/10.1101/gr.186072.114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Haft DH, DiCuccio M, Badretdin A, Brover V, Chetvernin V, O’Neill K, Li W, Chitsaz F, Derbyshire MK, Gonzales NR, Gwadz M, Lu F, Marchler GH, Song JS, Thanki N, Yamashita RA, Zheng C, Thibaud-Nissen F, Geer LY, Marchler-Bauer A, Pruitt KD (2018) RefSeq: an update on prokaryotic genome annotation and curation. Nucleic Acids Res 46:D851–d860. https://doi.org/10.1093/nar/gkx1068

    Article  CAS  PubMed  Google Scholar 

  28. Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP, Zaslavsky L, Lomsadze A, Pruitt KD, Borodovsky M, Ostell J (2016) NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res 44:6614–6624. https://doi.org/10.1093/nar/gkw569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M (2013) Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 14:60. https://doi.org/10.1186/1471-2105-14-60

    Article  PubMed  PubMed Central  Google Scholar 

  30. Yoon SH, Ha SM, Lim J, Kwon S, Chun J (2017) A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie Van Leeuwenhoek 110:1281–1286. https://doi.org/10.1007/s10482-017-0844-4

    Article  CAS  PubMed  Google Scholar 

  31. Na SI, Kim YO, Yoon SH, Ha SM, Baek I, Chun J (2018) UBCG: up-to-date bacterial core gene set and pipeline for phylogenomic tree reconstruction. J Microbiol 56:280–285. https://doi.org/10.1007/s12275-018-8014-6

    Article  CAS  PubMed  Google Scholar 

  32. Sasser M (1990) Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. MIDI Inc., North Newark, DE

    Google Scholar 

  33. Kates M (1986) Techniques of lipidology: isolation, analysis, and identification of lipids (2nd rev. edn.). Elsevier, Amsterdam

  34. Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O, Krichevsky MI, Moore LH, Moore WEC, Murray RGE, Stackebrandt E, Starr MP, Truper HG (1987) Report of the Ad Hoc Committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464

    Article  Google Scholar 

  35. Richter M, Rosselló-Móra R (2009) Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A 106:19126–19131. https://doi.org/10.1073/pnas.0906412106

    Article  PubMed  PubMed Central  Google Scholar 

  36. Liu C, Wang W, Wu Y, Zhou Z, Lai Q, Shao Z (2011) Multiple alkane hydroxylase systems in a marine alkane degrader, Alcanivorax dieselolei B-5. Environ Microbiol 13:1168–1178. https://doi.org/10.1111/j.1462-2920.2010.02416.x

    Article  CAS  PubMed  Google Scholar 

  37. Hara A, Baik SH, Syutsubo K, Misawa N, Smits TH, van Beilen JB, Harayama S (2004) Cloning and functional analysis of alkB genes in Alcanivorax borkumensis SK2. Environ Microbiol 6:191–197

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the chief scientist Dr. Xin Liu, the whole team of the KK1904 cruise and the crew of the R/V Tan Kah Kee for collecting samples in the South China Sea.

Funding

This work was financially supported by National Key R&D Program of China (2016YFA0601202); Scientific Research Foundation of Third Institute of Oceanography, MNR (2020009); National Natural Science Foundation of China (41976107, 91851203), China Ocean Mineral Resource R&D Association program (DY135-B2-01), and National Infrastructure of Natural Resources for Science and Technology Program of China (NIMR-2020-9).

Author information

Authors and Affiliations

Authors

Contributions

ZS supervised the study. CD and QL designed the research outline. YZ collected the seawater sample from the South China Sea. CD, QL, XL and LG performed the experiments. CD drafted the manuscript. CD, QL, ZS, ZX, DW revised the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Zongze Shao.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary information 1 (PDF 1183 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, C., Lai, Q., Liu, X. et al. Alcanivorax profundimaris sp. nov., a Novel Marine Hydrocarbonoclastic Bacterium Isolated from Seawater and Deep-Sea Sediment. Curr Microbiol 78, 1053–1060 (2021). https://doi.org/10.1007/s00284-020-02322-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-020-02322-7

Navigation