Skip to main content
Log in

Chitosan-Coated Surgical Sutures Prevent Adherence and Biofilms of Mixed Microbial Communities

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Sutures are widely used materials for closing the surgical wounds, and being an inert material, sutures are often colonized with drug-resistant polymicrobial biofilms. Surgical site infection (SSI) is a hospital-acquired infection caused by bacteria and fungi specifically in the sutured sites. Although most of the currently available sutures possess antibacterial property, their ability to prevent biofilm colonization by polymicrobial communities is underexplored. So, the present study shows that extracted chitosan (EC) from crab shells prevented the adherence of Staphylococcus epidermidis and Candida albicans, the predominant members that exist as mixed species at the site of SSI. In comparison with a commercial chitosan, EC showed profound inhibition of slime formation and mixed species biofilm inhibition. Intriguingly, EC-coated sutures could inhibit the growth of both bacterial and fungal pathogens when comparing with a commercial triclosan-coated suture which was active only against the bacterial pathogen. Scanning electron microscopy results revealed inhibition of C. albicans hyphal formation by the EC-coated sutures that is a crucial virulence factor responsible for tissue invasiveness. Collectively, the results of the present study showed that EC from crab shells (discarded material as a recalcitrant biowaste) could be used as an alternative to combat drug-resistant biofilms which are the prime cause for SSIs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Owens CD, Stoessel K (2008) Surgical site infections: epidemiology, microbiology and prevention. J Hosp Infect 70:3–10

    Article  Google Scholar 

  2. Edis Z, Haj Bloukh S, Ibrahim MR, Abu Sara H (2020) “Smart” antimicrobial nanocomplexes with potential to decrease surgical site infections (SSI). Pharmaceutics 12(4):361

    Article  CAS  Google Scholar 

  3. Baygar T, Sarac N, Ugur A, Karaca IR (2019) Antimicrobial characteristics and biocompatibility of the surgical sutures coated with biosynthesized silver nanoparticles. Bioorg Chem 86:254–258

    Article  CAS  Google Scholar 

  4. Kathju S, Nistico L, Hall-Stoodley L, Post JC, Ehrlich GD, Stoodley P (2009) Chronic surgical site infection due to suture-associated polymicrobial biofilm. Surg Infect 10:457–461

    Article  Google Scholar 

  5. DiPiro JT, Martindale RG, Bakst A, Vacani PF, Watson P, Miller MT (1998) Infection in surgical patients: effects on mortality, hospitalization and post discharge care. Am J Health-Syst Pharm 55:777–781

    Article  CAS  Google Scholar 

  6. Serrano C, Garcia-Fernandez L, Fernandez-Blazquez JP, Barbeck M, Ghanaati S, Unger R, Kirkpatrick J, Arzt E, Funk L, Turon P, del Campo A (2015) Nanostructured medical sutures with antibacterial properties. J Biomater 52:291–300

    Article  CAS  Google Scholar 

  7. Mangram AJ, Horan TC, Pearson ML, Silver LC, Jarvis WR (1999) Guideline for prevention of surgical site infection. Am J Infect Control 27:97–134

    Article  CAS  Google Scholar 

  8. Suzuki T, Iihara H, Uno T, Hara Y, Ohkusu K, Hata H, Shudo M, Ohashi Y (2007) Suture-related keratitis caused by Corynebacterium macginleyi. J Clin Microbiol 45:3833–3836

    Article  CAS  Google Scholar 

  9. Akers KS, Mende K, Cheatle K, Zera WC, Yu X, Beckius M, Aggarwal D, Carlos PL, Sanchez CJ, Wenke JC, Weintro AC, Tribble DR, Murray CK (2014) Biofilms and persistent wound infections in United States military trauma patients a case-control analysis. BMC Infect Dis 14:190–201

    Article  Google Scholar 

  10. Edmiston CE, McBain AJ, Roberts C, Leaper D (2014) Clinical and microbiological aspects of biofilm-associated surgical site infections. Adv Exp Med Biol 830:47–67

    Article  Google Scholar 

  11. Gallo AL, Paladini F, Romano A, Verri T, Quattrini A, Sannino A, Pollini M (2016) Efficacy of silver coated surgical sutures on bacterial contamination, cellular response and wound healing. Mater Sci Eng C Mater Biol Appl 1(69):884–893

    Article  Google Scholar 

  12. Yang Y, Yang SB, Wang YG, Zhang SH, Yu ZF, Tang TT (2016) Bacterial inhibition potential of quaternised chitosan-coated VICRYL absorbable suture: an in vitro and in vivo study. J Orthop Translat 8:49–61

    Article  Google Scholar 

  13. Cao GF, Sun Y, Chen JG, Song LP, Jiang JQ, Liu ZT, Liu ZW (2014) Sutures modified by silver-loaded montmorillonite with antibacterial properties. Appl Clay Sci 93–94:102–106

    Article  Google Scholar 

  14. Sudha D, Dhurai B, Ponthangam T (2017) Development of herbal drug loaded antimicrobial silk suture. Ind J Fib Texti Res 42:286–290

    CAS  Google Scholar 

  15. Debbabi F, Gargoubi S, HadjAyed MA, Abdessalem SB (2017) Development and characterization of antibacterial braided polyamide suture coated with chitosan-citric acid biopolymer. J Biomater Appl 32:384–398

    Article  CAS  Google Scholar 

  16. Montenegro R, Godeiro JRG (2012) Chitosan based suture—focusing on the real advantages of an outstanding biomaterial. Adv Chit sci 14:211–217

    Google Scholar 

  17. Fry DE (2002) The economic costs of surgical site infection. Surg infect 3:37–43

    Article  Google Scholar 

  18. Pammi M, Liang R, Hicks J, Mistretta TA, Versalovic J (2013) Biofilm extracellular DNA enhances mixed species biofilms of Staphylococcus epidermidis and Candida albicans. BMC Microbiol 13:257–269

    Article  Google Scholar 

  19. Harriott MM, Noverr MC (2009) Candida albicans and Staphylococcus aureus form polymicrobial biofilms: effects on antimicrobial resistance. Antimicrob Agents Chemother 53:3914–3922

    Article  CAS  Google Scholar 

  20. Rubini D, Banu SF, Hari NH, Devi RM, Gowrishankar S, Pandian SK, Nithyanand P (2018) Chitosan extracted from marine biowaste mitigates staphyloxanthin production and biofilms of Methicillin- resistant Staphylococcus aureus. Food Chem Toxicol 118:733–744

    Article  CAS  Google Scholar 

  21. Rubini D, Banu SF, Nisha P, Murugan R, Thamotharan S, Percino MJ, Prabha S, Nithyanand P (2018) Essential oils from unexplored aromatic plants quench biofilm formation and virulence of Methicillin resistant Staphylococcus aureus. Microb Pathog 122:162–173

    Article  CAS  Google Scholar 

  22. Rubini D, Banu SF, Prabha S, Hari BNV, Gowrishankar S, Pandian SK, Wilson A, Nithyanand P (2019) Extracted chitosan disrupts quorum sensing mediated virulence factors in urinary tract infection causing pathogens. Pathog Dis 77.

  23. Quave CL, Plano LRW, Pantuso T, Bennett BC (2018) Effects of extracts from Italian medicinal plants on planktonic growth, biofilm formation and adherence of methicillin-resistant Staphylococcus aureus. J Ethnopharmacol 118:418–428

    Article  Google Scholar 

  24. Chessa D, Ganau G, Spiga L, Bulla A, Mazzarello V, Campus GV, Rubino S (2016) Staphylococcus aureus and Staphylococcus epidermidis virulence strains as causative agents of persistent infections in breast implants. PLoS ONE 11:668–783

    Article  Google Scholar 

  25. Gowrishankar S, Thenmozhi R, Balaji K, Pandian SK (2013) Emergence of methicillin resistant, vancomycin-intermediate Staphylococcus aureus among patients associated with group a streptococcal pharyngitis infection in southern India. Infect Genet Evol 14:383–389

    Article  Google Scholar 

  26. Banu SF, Rubini D, Shanmugavelan P, Murugan R, Gowrishankar S, Pandian SK, Nithyanand P (2018) Effects of patchouli and cinnamon essential oils on biofilm and hyphae formation by Candida species. J Mycol Med 28:332–339

    Article  Google Scholar 

  27. Gowrishankar S, Kamaladevi A, Ayyanar KS, Balamurugan K, Pandian SK (2015) Bacillus amyloliquefaciens-secreted1 cyclic dipeptide: cyclo [l-leucyl-l-prolyl] inhibits biofilm and virulence production in methicillin-resistant Staphylococcus aureus. RSC Adv 116:788–804

    Google Scholar 

  28. Nithyanand P, Shafreen RM, Muthamil S, Pandian SK (2015) Usnic acid a lichen secondary metabolite inhibits Group A Streptococcus biofilms. Antonie Van Leeuwenhoek 107:263–272

    Article  CAS  Google Scholar 

  29. Hess DJ, Henry-Stanley MJ, Wells CL (2011) Gentamicin promotes Staphylococcus aureus biofilms on silk suture. J Surg Res 170:302–308

    Article  CAS  Google Scholar 

  30. Cobrado L, Silva-Dias A, Azevedo MM, Pina-Vaz C, Rodrigues AG (2012) In vivo antibiofilm effect of cerium, chitosan and hamamelitannin against usual agents of catheter-related bloodstream infections. J Antimicrob Chemother 68:126–130

    Article  Google Scholar 

  31. Costa EM, Silva S, Tavaria FK, Pintado MM (2013) Study of the effects of chitosan upon Streptococcus mutans adherence and biofilm formation. Anaerobe 20:27–31

    Article  CAS  Google Scholar 

  32. Ghannam EH, Talab AS, Dolganova NV, Hussein AMS, Abdelmaguid NM (2016) Characterization of chitosan extracted from different crustacean shell wastes. J Appl Sci 16:454–461

    Article  CAS  Google Scholar 

  33. Milanov D, Lazic S, Vidic B, Peterrovic J, Bugarski D, Seguljev Z (2010) Slime production and biofilm forming ability by Staphylococcus aureus bovine mastitis isolates. Acta Veterinaria [Beograd] 60:217–226

    Article  Google Scholar 

  34. Ishak MA, Groschel DH, Mandell GL, Wenzel RP (1985) Association of slime with pathogenicity of coagulase-negative staphylococci causing nosocomial septicemia. J Clin Microbiol 22:10259

    Article  Google Scholar 

  35. Baselga R, Albizu I, De La Cruz M, Del Cacho E, Barberan M, Amorena B (1993) Phase variation of slime production in Staphylococcus aureus: implications in colonization and virulence. Infect Immun 61(11):4857–4862

    Article  CAS  Google Scholar 

  36. Aguilar B, Amorena B, Iturralde M (2001) Effect of slime on adherence of Staphylococcus aureus isolated from bovine and ovine mastitis. Vet Microbiol 78:183–191

    Article  CAS  Google Scholar 

  37. Arslan S, Ozkardes F (2007) Slime production and antibiotic susceptibility in staphylococci isolated from clinical samples. MemInst Oswaldo Cruz 102:29–33

    Article  CAS  Google Scholar 

  38. Villalain J, Mateo CR, Aranda FJ, Shapiro S, Micol V (2001) Membranotropic effects of the antibacterial agent Triclosan. Arch Biochem Biophys 390:128–136

    Article  CAS  Google Scholar 

  39. Syed AK, Ghosh S, Love NG, Boles BR (2014) Triclosan promotes Staphylococcus aureus nasal colonization. mBio 5:1015–1028

    Article  Google Scholar 

  40. Simon AT, Dutta D, Chattopadhyay A, Ghosh SS (2019) Copper nanocluster-doped luminescent hydroxyapatite nanoparticles for antibacterial and antibiofilm applications. ACS Omega 4(3):4697–4706

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support from Department of Biotechnology [DBT], Ministry of science and Technology, New Delhi [BT/PR/23592/MED/29/1203/2017] is gratefully acknowledged. The Fellowship to DR in the form of JRF by DBT is thankfully acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

PS, PJVSR and DR performed research, BNVH, WA and PN analyzed data and wrote the paper, PN designed overall study/research.

Corresponding author

Correspondence to Paramasivam Nithyanand.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical Approval

The clinical strain was isolated from wound site of an infected patient from Balaji Hospital, Chennai after obtaining the ethical committee approval [Ref.No.002/SBMC/IHEC/2019/1190].

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (DOCX 3332 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prabha, S., Sowndarya, J., Ram, P.J.V.S. et al. Chitosan-Coated Surgical Sutures Prevent Adherence and Biofilms of Mixed Microbial Communities. Curr Microbiol 78, 502–512 (2021). https://doi.org/10.1007/s00284-020-02306-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-020-02306-7

Navigation