Skip to main content
Log in

Complete Genome of Nocamycin-Producing Strain Saccharothrix syringae NRRL B-16468 Reveals the Biosynthetic Potential for Secondary Metabolites

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

The bacterium Saccharothrix syringae NRRL B-16468 is the producer of nocamycin I and nocamycin II which feature tetramic acid and bicyclic ketal groups. In this study, we presented the complete genome of S. syringae NRRL B-16468 obtained from ARS Culture Collection. It contains a circular chromosome of 10,929,570 bp with an average GC content of 73.49%, 9316 genes, 12 rRNAs and 54 tRNAs. Bioinformatics analyses of the genome has demonstrated that it harbors 55 putative biosynthetic gene clusters (BGCs) involved in synthesizing diverse secondary metabolites. The backbones of the natural products synthesized by these BGCs encoding for type I polyketide synthase (PKS), non-ribosomal peptide synthetase (NRPS) and hybrid type I PKS-NRPS were analyzed, furthermore, the natural products synthesized by these BGCs with > 40% similarity to known BGCs were described in detail. The complete genome of S. syringae reveals its capacity in producing diverse bioactive natural products, and it will also shed lights on mining novel secondary metabolites from S. syringae through rational strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Monciardini P, Iorio M, Maffioli S, Sosio M, Donadio S (2014) Discovering new bioactive molecules from microbial sources. Microb Biotechnol 7(3):209–220

    Article  CAS  Google Scholar 

  2. Okada BK, Seyedsayamdost MR (2017) Antibiotic dialogues: induction of silent biosynthetic gene clusters by exogenous small molecules. FEMS Microbiol Rev 41(1):19–33

    Article  CAS  Google Scholar 

  3. Strobel T, Al-Dilaimi A, Blom J, Gessner A, Kalinowski J, Luzhetska M, Pühler A, Szczepanowski R, Bechthold A, Rückert C (2012) Complete genome sequence of Saccharothrix espanaensis DSM 44229(T) and comparison to the other completely sequenced Pseudonocardiaceae. BMC Genom 13:465

    Article  CAS  Google Scholar 

  4. Liu C, Fan D, Li Y, Chen Y, Huang L, Yan X (2018) Transcriptome analysis of Valsa mali reveals its response mechanism to the biocontrol actinomycete Saccharothrix yanglingensis Hhs.015. BMC Microbiol 18(1):90

    Article  Google Scholar 

  5. Lu S, Nishimura S, Takenaka K, Ito M, Kato T, Kakeya H (2018) Discovery of presaccharothriolide X, a retro-Michael reaction product of saccharothriolide B, from the rare actinomycete Saccharothrix sp. A1506. Org Lett 20(15):4406–4410

    Article  CAS  Google Scholar 

  6. Gauze GF, Sveshnikova MA, Ukholina RS, Komarova GN, Bazhanov VS (1977) Formation of a new antibiotic, nocamycin, by a culture of Nocardiopsis syringae sp. Nov. Antibiotiki 22(6):483–486

    CAS  PubMed  Google Scholar 

  7. Mo X, Shi C, Gui C, Zhang Y, Ju J, Wang Q (2017) Identification of nocamycin biosynthetic gene cluster from Saccharothrix syringae NRRL B-16468 and generation of new nocamycin derivatives by manipulating gene cluster. Microb Cell Fact 16(1):100

    Article  Google Scholar 

  8. Mo X, Gui C, Wang Q (2017) Elucidation of a carboxylate O-methyltransferase NcmP in nocamycin biosynthetic pathway. Bioorg Med Chem Lett 27(18):4431–4435

    Article  CAS  Google Scholar 

  9. Li R, Li Y, Kristiansen K, Wang J (2008) SOAP: short oligonucleotide alignment program. Bioinformatics 24(5):713–714

    Article  CAS  Google Scholar 

  10. Koren S, Walenz BP, Berlin K, Miller JR, Bergman NH, Phillippy AM (2017) Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res 27(5):722–736

    Article  CAS  Google Scholar 

  11. Huerta-Cepas J, Szklarczyk D, Forslund K, Cook H, Heller D, Walter MC, Rattei T, Mende DR, Sunagawa S, Kuhn M, Jensen LJ, von Mering C, Bork P (2016) eggNOG 4.5: a hierarchical orthology framework with improved functional annotations for eukaryotic, prokaryotic and viral sequences. Nucleic Acids Res 44(D1):D286-293

    Article  CAS  Google Scholar 

  12. Blin K, Shaw S, Steinke K, Villebro R, Ziemert N, Lee SY, Medema MH, Weber T (2019) antiSMASH 5.0: updates to the secondary metabolite genome mining pipeline. Nucleic Acids Res 47(W1):W81–W87

    Article  CAS  Google Scholar 

  13. León B, Navarro G, Dickey BJ, Stepan G, Tsai A, Jones GS, Morales ME, Barnes T, Ahmadyar S, Tsiang M, Geleziunas R, Cihlar T, Pagratis N, Tian Y, Yu H, Linington RG (2015) Abyssomicin 2 reactivates latent HIV-1 by a PKC- and HDAC-independent mechanism. Org Lett 17(2):262–265

    Article  Google Scholar 

  14. Wang Q, Song F, Xiao X, Huang P, Li L, Monte A, Abdel-Mageed WM, Wang J, Guo H, He W, Xie F, Dai H, Liu M, Chen C, Xu H, Liu M, Piggott AM, Liu X, Capon RJ, Zhang L (2013) Abyssomicins from the South China Sea deep-sea sediment Verrucosispora sp.: natural thioether Michael addition adducts as antitubercular prodrugs. Angew Chem Int Ed 52(4):1231–1234

    Article  CAS  Google Scholar 

  15. Huang P, Xie F, Ren B, Wang Q, Wang J, Wang Q, Abdel-Mageed WM, Liu M, Han J, Oyeleye A, Shen J, Song F, Dai H, Liu X, Zhang L (2016) Anti-MRSA and anti-TB metabolites from marine-derived Verrucosispora sp. MS100047. Appl Microbiol Biotechnol 100(17):7437–7447

    Article  CAS  Google Scholar 

  16. Gottardi EM, Krawczyk JM, von Suchodoletz H, Schadt S, Mühlenweg A, Uguru GC, Pelzer S, Fiedler HP, Bibb MJ, Stach JE, Süssmuth RD (2011) Abyssomicin biosynthesis: formation of an unusual polyketide, antibiotic-feeding studies and genetic analysis. ChemBioChem 12(9):1401–1410

    Article  CAS  Google Scholar 

  17. Blodgett JA, Oh DC, Cao S, Currie CR, Kolter R, Clardy J (2010) Common biosynthetic origins for polycyclic tetramate macrolactams from phylogenetically diverse bacteria. Proc Natl Acad Sci USA 107(26):11692–11697

    Article  CAS  Google Scholar 

  18. Zhang G, Zhang W, Saha S, Zhang C (2016) Recent advances in discovery, biosynthesis and genome mining of medicinally relevant polycyclic tetramate macrolactams. Curr Top Med Chem 16(15):1727–1739

    Article  CAS  Google Scholar 

  19. Schmoock G, Pfennig F, Jewiarz J, Schlumbohm W, Laubinger W, Schauwecker F, Keller U (2005) Functional cross-talk between fatty acid synthesis and nonribosomal peptide synthesis in quinoxaline antibiotic-producing Streptomycetes. J Biol Chem 280(6):4339–4349

    Article  CAS  Google Scholar 

  20. Watanabe K, Hotta K, Nakaya M, Praseuth AP, Wang CC, Inada D, Takahashi K, Fukushi E, Oguri H, Oikawa H (2009) Escherichia coli allows efficient modular incorporation of newly isolated quinomycin biosynthetic biosynthetic enzyme into echinomycin biosynthetic pathway for rational design and synthesisof potent antibiotic unnatural natural product. J Am Chem Soc 131(26):9347–9353

    Article  CAS  Google Scholar 

  21. Pu JY, Peng C, Tang MC, Zhang Y, Guo JP, Song LQ, Hua Q, Tang GL (2013) Naphthyridinomycin biosynthesis revealing the use of leader peptide to guide nonribosomal peptide assembly. Org Lett 15(14):3674–3677

    Article  CAS  Google Scholar 

  22. Giessen TW, Franke KB, Knappe TA, Kraas FI, Bosello M, Xie X, Linne U, Marahiel MA (2012) Isolation, structure elucidation, and biosynthesis of an unusual hydroxamic acid ester-containing siderophore from Actinosynnema mirum. J Nat Prod 75(5):905–914

    Article  CAS  Google Scholar 

  23. Udwary DW, Zeigler L, Asolkar RN, Singan V, Lapidus A, Fenical W, Jensen PR, Moore BS (2007) Genome sequencing reveals complex secondary metabolome in the marine actinomycete Salinispora tropica. Proc Natl Acad Sci USA 104(25):10376–10381

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Grants from the National Natural Science Foundation of China (No. 31300063), Research Foundation for Advanced Talents of Qingdao Agricultural University (No. 631301), and Open Research Project from Guangdong Key Laboratory of Marine Materia Medica (No. LMM2019-1).

Author information

Authors and Affiliations

Authors

Contributions

XM conceived and performed the experiments. XM and SY analyzed the data and wrote the manuscript. All authors read the approved the manuscript.

Corresponding author

Correspondence to Xuhua Mo.

Ethics declarations

Conflict of interest

All the authors declare no conflict of interests with respect to this paper.

Research Involving Human and Animal Participants

This research does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (DOCX 745 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mo, X., Yang, S. Complete Genome of Nocamycin-Producing Strain Saccharothrix syringae NRRL B-16468 Reveals the Biosynthetic Potential for Secondary Metabolites. Curr Microbiol 78, 107–113 (2021). https://doi.org/10.1007/s00284-020-02272-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-020-02272-0

Navigation