Skip to main content
Log in

Biological Approaches in Polyhydroxyalkanoates Recovery

  • Review Article
  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Polyhydroxyalkanoates (PHA) are bio-based polymers with the potential of replace petrochemical plastics. Nevertheless, PHA commercialization is still low, due to the high production cost associated with industrial-scale development. The most cost/efficient PHA recovery strategies use organochlorine compounds or harsh reagents implying a high environmental impact. Therefore, the importance of developing an economical and efficient recovery strategy cannot be overestimated. Thus, new approaches have been reported that look for creating a sustainable production process, such as biological recovery, PHA secretion or predator bacteria. Moreover, if bioplastics would become the plastics of the future, it must be necessary to replace the traditional PHA extraction methods by environmentally friendly options. Hence, the aim of this review is to analyze trends in the development of efficient technologies for the sustainable recovery of polyhydroxyalkanoates (PHA) produced by microorganisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Bengtsson S, Karlsson A, Alexandersson T et al (2017) A process for polyhydroxyalkanoate (PHA) production from municipal wastewater treatment with biological carbon and nitrogen removal demonstrated at pilot-scale. N Biotechnol 35:42–53. https://doi.org/10.1016/j.nbt.2016.11.005

    Article  CAS  PubMed  Google Scholar 

  2. Dubey S, Bharmoria P, Gehlot PS et al (2018) 1-ethyl-3-methylimidazolium diethylphosphate based extraction of bioplastic “polyhydroxyalkanoates” from bacteria: green and sustainable approach. ACS Sustain Chem Eng 6:766–773. https://doi.org/10.1021/acssuschemeng.7b03096

    Article  CAS  Google Scholar 

  3. Kourmentza C, Plácido J, Venetsaneas N et al (2017) Recent advances and challenges towards sustainable polyhydroxyalkanoate (PHA) production. Bioengineering 4:1–43. https://doi.org/10.3390/bioengineering4020055

    Article  CAS  Google Scholar 

  4. Jiang G, Hill DJ, Kowalczuk M et al (2016) Carbon sources for polyhydroxyalkanoates and an integrated biorefinery. Int J Mol Sci. https://doi.org/10.3390/ijms17071157

    Article  PubMed  PubMed Central  Google Scholar 

  5. Oliva-Arancibia B, Órdenes-Aenishanslins N, Bruna N et al (2017) Co-synthesis of medium-chain-length polyhydroxyalkanoates and CdS quantum dots nanoparticles in Pseudomonas putida KT2440. J Biotechnol 264:29–37. https://doi.org/10.1016/j.jbiotec.2017.10.013

    Article  CAS  PubMed  Google Scholar 

  6. Raberg M, Volodina E, Lin K, Steinbüchel A (2018) Ralstonia eutropha H16 in progress: applications beside PHAs and establishment as production platform by advanced genetic tools. Crit Rev Biotechnol 38:494–510. https://doi.org/10.1080/07388551.2017.1369933

    Article  CAS  PubMed  Google Scholar 

  7. Bresan S, Sznajder A, Hauf W et al (2016) Polyhydroxyalkanoate (PHA) granules have no phospholipids. Sci Rep 6:1–13. https://doi.org/10.1038/srep26612

    Article  CAS  Google Scholar 

  8. Jendrossek D, Pfeiffer D (2014) New insights in the formation of polyhydroxyalkanoate granules (carbonosomes) and novel functions of poly(3-hydroxybutyrate). Environ Microbiol 16:2357–2373. https://doi.org/10.1111/1462-2920.12356

    Article  CAS  PubMed  Google Scholar 

  9. Prieto A, Escapa IF, Martínez V et al (2016) A holistic view of polyhydroxyalkanoate metabolism in Pseudomonas putida. Environ Microbiol 18:341–357. https://doi.org/10.1111/1462-2920.12760

    Article  CAS  PubMed  Google Scholar 

  10. Johnson K, Kleerebezem R, van Loosdrecht MCM (2010) Influence of ammonium on the accumulation of polyhydroxybutyrate (PHB) in aerobic open mixed cultures. J Biotechnol 147:73–79. https://doi.org/10.1016/j.jbiotec.2010.02.003

    Article  CAS  PubMed  Google Scholar 

  11. Sanchuki HBS, Gravina F, Rodrigues TE et al (2017) Dynamics of the Escherichia coli proteome in response to nitrogen starvation and entry into the stationary phase. Biochim Biophys Acta Proteins Proteomics 1865:344–352. https://doi.org/10.1016/j.bbapap.2016.12.002

    Article  CAS  PubMed  Google Scholar 

  12. Schlebusch M, Forchhammer K (2010) Requirement of the nitrogen starvation-induced protein s110783 for polyhydroxybutyrate accumulation in synechocystis sp. strain PCC 6803. Appl Environ Microbiol 76:6101–6107. https://doi.org/10.1128/AEM.00484-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Switzer A, Evangelopoulos D, Figueira R et al (2018) A novel regulatory factor affecting the transcription of methionine biosynthesis genes in Escherichia coli experiencing sustained nitrogen starvation. Microbiol (United Kingdom) 164:1457–1470. https://doi.org/10.1099/mic.0.000683

    Article  CAS  Google Scholar 

  14. James BW, Mauchline WS, Dennis PJ et al (1999) Poly-3-hydroxybutyrate in Legionella pneumophila, an energy source for survival in low-nutrient environments. Appl Environ Microbiol 65:822–827

    Article  CAS  Google Scholar 

  15. Samorì C, Abbondanzi F, Galletti P et al (2015) Extraction of polyhydroxyalkanoates from mixed microbial cultures: impact on polymer quality and recovery. Bioresour Technol 189:195–202. https://doi.org/10.1016/j.biortech.2015.03.062

    Article  CAS  PubMed  Google Scholar 

  16. Ong SY, Kho HP, Riedel SL et al (2018) An integrative study on biologically recovered polyhydroxyalkanoates (PHAs) and simultaneous assessment of gut microbiome in yellow mealworm. J Biotechnol 265:31–39. https://doi.org/10.1016/j.jbiotec.2017.10.017

    Article  CAS  PubMed  Google Scholar 

  17. Koller M (2018) A review on established and emerging fermentation schemes for microbial production of polyhydroxyalkanoate (PHA) biopolyesters. Fermentation. https://doi.org/10.3390/fermentation4020030

    Article  Google Scholar 

  18. Bengtsson S, Pisco AR, Johansson P et al (2010) Molecular weight and thermal properties of polyhydroxyalkanoates produced from fermented sugar molasses by open mixed cultures. J Biotechnol 147:172–179. https://doi.org/10.1016/j.jbiotec.2010.03.022

    Article  CAS  PubMed  Google Scholar 

  19. Kunasundari B, Sudesh K (2011) Isolation and recovery of microbial polyhydroxyalkanoates. Express Polym Lett 5:620–634. https://doi.org/10.3144/expresspolymlett.2011.60

    Article  Google Scholar 

  20. Koller M, Braunegg G (2015) Potential and prospects of continuous polyhydroxyalkanoate (PHA) production. Bioengineering 2:94–121. https://doi.org/10.3390/bioengineering2020094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Tortajada M, da Silva LF, Prieto MA (2013) Second-generation functionalized mediumchain-length polyhydroxyalkanoates: the gateway to high-value bioplastic applications. Int Microbiol 16:1–15. https://doi.org/10.2436/20.1501.01.175

    Article  CAS  PubMed  Google Scholar 

  22. Huang L, Chen Z, Wen Q, Lee DJ (2017) Enhanced polyhydroxyalkanoate production by mixed microbial culture with extended cultivation strategy. Bioresour Technol 241:802–811. https://doi.org/10.1016/j.biortech.2017.05.192

    Article  CAS  PubMed  Google Scholar 

  23. Montiel-Jarillo G, Carrera J, Suárez-Ojeda ME (2017) Enrichment of a mixed microbial culture for polyhydroxyalkanoates production: effect of pH and N and P concentrations. Sci Total Environ 583:300–307. https://doi.org/10.1016/j.scitotenv.2017.01.069

    Article  CAS  PubMed  Google Scholar 

  24. Van-Thuoc D, Huu-Phong T, Minh-Khuong D, Hatti-Kaul R (2015) Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) production by a moderate halophile yangia sp. ND199 using glycerol as a carbon source. Appl Biochem Biotechnol 175:3120–3132. https://doi.org/10.1007/s12010-015-1479-4

    Article  CAS  PubMed  Google Scholar 

  25. Koller M, Maršálek L, de Sousa Dias MM, Braunegg G (2017) Producing microbial polyhydroxyalkanoate (PHA) biopolyesters in a sustainable manner. N Biotechnol 37:24–38. https://doi.org/10.1016/j.nbt.2016.05.001

    Article  CAS  PubMed  Google Scholar 

  26. Kumar V, Thakur V, Ambika, et al (2018) Bioplastic reservoir of diverse bacterial communities revealed along altitude gradient of Pangi-Chamba trans-Himalayan region. FEMS Microbiol Lett 365:1–9. https://doi.org/10.1093/femsle/fny144

  27. Valentino F, Morgan-Sagastume F, Campanari S et al (2017) Carbon recovery from wastewater through bioconversion into biodegradable polymers. N Biotechnol 37:9–23. https://doi.org/10.1016/j.nbt.2016.05.007

    Article  CAS  PubMed  Google Scholar 

  28. Colombo B, Favini F, Scaglia B et al (2017) Enhanced polyhydroxyalkanoate (PHA) production from the organic fraction of municipal solid waste by using mixed microbial culture. Biotechnol Biofuels 10:1–15. https://doi.org/10.1186/s13068-017-0888-8

    Article  CAS  Google Scholar 

  29. Kaur L, Khajuria R, Parihar L, Dimpal Singh G (2017) Polyhydroxyalkanoates: biosynthesis to commercial production—a review. J Microbiol Biotechnol Food Sci 6:1098–1106. https://doi.org/https://doi.org/10.15414/jmbfs.2017.6.4.1098-1106

  30. Raza ZA, Riaz S, Banat IM (2018) Polyhydroxyalkanoates: properties and chemical modification approaches for their functionalization. Biotechnol Prog 34:29–41. https://doi.org/10.1002/btpr.2565

    Article  CAS  PubMed  Google Scholar 

  31. Daly SR, Fathi A, Bahramian B et al (2018) A green process for the purification of biodegradable poly(Β-hydroxybutyrate). J Supercrit Fluids 135:84–90. https://doi.org/10.1016/j.supflu.2018.01.007

    Article  CAS  Google Scholar 

  32. Jiang G, Johnston B, Townrow DE et al (2018) Biomass extraction using non-chlorinated solvents for biocompatibility improvement of polyhydroxyalkanoates. Polymers (Basel). https://doi.org/10.3390/polym10070731

    Article  PubMed Central  Google Scholar 

  33. Jacquel N, Lo CW, Wei YH et al (2008) Isolation and purification of bacterial poly(3-hydroxyalkanoates). Biochem Eng J 39:15–27. https://doi.org/10.1016/j.bej.2007.11.029

    Article  CAS  Google Scholar 

  34. Koller M, Niebelschütz H, Braunegg G (2013) Strategies for recovery and purification of poly[(R)-3-hydroxyalkanoates] (PHA) biopolyesters from surrounding biomass. Eng Life Sci 13:549–562. https://doi.org/10.1002/elsc.201300021

    Article  CAS  Google Scholar 

  35. Ong SY, Zainab-L I, Pyary S, Sudesh K (2018) A novel biological recovery approach for PHA employing selective digestion of bacterial biomass in animals. Appl Microbiol Biotechnol 102:2117–2127. https://doi.org/10.1007/s00253-018-8788-9

    Article  CAS  PubMed  Google Scholar 

  36. Kosseva MR, Rusbandi E (2018) Trends in the biomanufacture of polyhydroxyalkanoates with focus on downstream processing. Int J Biol Macromol 107:762–778. https://doi.org/10.1016/j.ijbiomac.2017.09.054

    Article  CAS  PubMed  Google Scholar 

  37. Kapritchkoff FM, Viotti AP, Alli RCP et al (2006) Enzymatic recovery and purification of polyhydroxybutyrate produced by Ralstonia eutropha. J Biotechnol 122:453–462. https://doi.org/10.1016/j.jbiotec.2005.09.009

    Article  CAS  PubMed  Google Scholar 

  38. Liu CC, Zhang LL, An J et al (2016) Recent strategies for efficient production of polyhydroxyalkanoates by micro-organisms. Lett Appl Microbiol 62:9–15. https://doi.org/10.1111/lam.12511

    Article  CAS  PubMed  Google Scholar 

  39. Akdoğan M, Çelik E (2018) Purification and characterization of polyhydroxyalkanoate (PHA) from a Bacillus megaterium strain using various dehydration techniques. J Chem Technol Biotechnol 93:2292–2298. https://doi.org/10.1002/jctb.5572

    Article  CAS  Google Scholar 

  40. Balakrishna Pillai A, Jaya Kumar A, Kumarapillai H (2018) Enhanced production of poly(3-hydroxybutyrate) in recombinant Escherichia coli and EDTA—microwave-assisted cell lysis for polymer recovery. AMB Express. https://doi.org/10.1186/s13568-018-0672-6

    Article  PubMed  PubMed Central  Google Scholar 

  41. Wang Y, Liu S (2013) Enzymatic recovery of polyhydroxybutyrate (PHB) from Burkholderia cepacia by pancreatin and characterization of polymer properties. J Bioprocess Eng Biorefinery. https://doi.org/10.1166/jbeb.2013.1058

    Article  Google Scholar 

  42. Neves A, Müller J (2012) Use of enzymes in extraction of polyhydroxyalkanoates produced by Cupriavidus necator. Biotechnol Prog 28:1575–1580. https://doi.org/10.1002/btpr.1624

    Article  CAS  PubMed  Google Scholar 

  43. Yasotha K, Aroua MK, Ramachandran KB, Tan IKP (2006) Recovery of medium-chain-length polyhydroxyalkanoates (PHAs) through enzymatic digestion treatments and ultrafiltration. Biochem Eng J 30:260–268. https://doi.org/10.1016/j.bej.2006.05.008

    Article  CAS  Google Scholar 

  44. Lee SY, Show PL, Ko CM, Chang YK (2019) A simple method for cell disruption by immobilization of lysozyme on the extrudate-shaped Na-Y zeolite: recirculating packed bed disruption process. Biochem Eng J 141:210–216. https://doi.org/10.1016/j.bej.2018.10.016

    Article  CAS  Google Scholar 

  45. Gutt B, Kehl K, Ren Q, Boesel LF (2016) Using ANOVA models to compare and optimize extraction protocols of P3HBHV from Cupriavidus necator. Ind Eng Chem Res 55:10355–10365. https://doi.org/10.1021/acs.iecr.6b02694

    Article  CAS  Google Scholar 

  46. Pakhale SV, Vetal MD, Rathod VK (2013) Separation of bromelain by aqueous two phase flotation. Sep Sci Technol 48:984–989. https://doi.org/10.1080/01496395.2012.712596

    Article  CAS  Google Scholar 

  47. Borowitz D, Goss CH, Limauro S et al (2006) Study of a novel pancreatic enzyme replacement therapy in pancreatic insufficient subjects with cystic fibrosis. J Pediatr. https://doi.org/10.1016/j.jpeds.2006.07.030

    Article  PubMed  Google Scholar 

  48. Kunasundari B, Arza CR, Maurer FHJ et al (2017) Biological recovery and properties of poly(3-hydroxybutyrate) from Cupriavidus necator H16. Sep Purif Technol 172:1–6. https://doi.org/10.1016/j.seppur.2016.07.043

    Article  CAS  Google Scholar 

  49. Kunasundari B, Murugaiyah V, Kaur G, Maurer FHJ, Sudesh K (2013) Revisiting the single cell protein application of cupriavidus necator H16 and recovering bioplastic granules simultaneously. PLoS One 8:1–15. https://doi.org/10.1371/journal.pone.0078528

    Article  CAS  Google Scholar 

  50. Murugan P, Han L, Gan CY et al (2016) A new biological recovery approach for PHA using mealworm, Tenebrio molitor. J Biotechnol 239:98–105. https://doi.org/10.1016/j.jbiotec.2016.10.012

    Article  CAS  PubMed  Google Scholar 

  51. Martínez V, Herencias C, Jurkevitch E, Prieto MA (2016) Engineering a predatory bacterium as a proficient killer agent for intracellular bio-products recovery: the case of the polyhydroxyalkanoates. Sci Rep 6:1–12. https://doi.org/10.1038/srep24381

    Article  CAS  Google Scholar 

  52. Im H, Dwidar M, Mitchell RJ (2018) Bdellovibrio bacteriovorus HD100, a predator of Gram-negative bacteria, benefits energetically from Staphylococcus aureus biofilms without predation. ISME J 12:2090–2095. https://doi.org/10.1038/s41396-018-0154-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Martínez V, Jurkevitch E, García JL, Prieto MA (2013) Reward for Bdellovibrio bacteriovorus for preying on a polyhydroxyalkanoate producer. Environ Microbiol 15:1204–1215. https://doi.org/10.1111/1462-2920.12047

    Article  CAS  PubMed  Google Scholar 

  54. Martínez V, de la Peña F, García-Hidalgo J et al (2012) Identification and biochemical evidence of a medium-chain-length polyhydroxyalkanoate depolymerase in the Bdellovibrio bacteriovorus predatory hydrolytic arsenal. Appl Environ Microbiol 78:6017–6026. https://doi.org/10.1128/AEM.01099-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Loessner MJ (2005) Bacteriophage endolysins—current state of research and applications. Curr Opin Microbiol 8:480–487. https://doi.org/10.1016/j.mib.2005.06.002

    Article  CAS  PubMed  Google Scholar 

  56. Martínez V, García P, García JL, Prieto MA (2011) Controlled autolysis facilitates the polyhydroxyalkanoate recovery in Pseudomonas putida KT2440. Microb Biotechnol 4:533–547. https://doi.org/10.1111/j.1751-7915.2011.00257.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Fischetti VA (2010) Bacteriophage endolysins: a novel anti-infective to control Gram-positive pathogens. Int J Med Microbiol 300:357–362. https://doi.org/10.1016/j.ijmm.2010.04.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Monk AB, Rees CD, Barrow P et al (2010) Bacteriophage applications: where are we now? Lett Appl Microbiol 51:363–369. https://doi.org/10.1111/j.1472-765X.2010.02916.x

    Article  CAS  PubMed  Google Scholar 

  59. Nobrega FL, Costa AR, Kluskens LD, Azeredo J (2015) Revisiting phage therapy: new applications for old resources. Trends Microbiol 23:185–191. https://doi.org/10.1016/j.tim.2015.01.006

    Article  CAS  PubMed  Google Scholar 

  60. Resch S, Gruber K, Wanner G et al (1998) Aqueous release and purification of poly(β-hydroxybutyrate) from Escherichia coli. J Biotechnol 65:173–182. https://doi.org/10.1016/S0168-1656(98)00127-8

    Article  CAS  PubMed  Google Scholar 

  61. Hori K, Kaneko M, Tanji Y et al (2002) Construction of self-disruptive Bacillus megaterium in response to substrate exhaustion for polyhydroxybutyrate production. Appl Microbiol Biotechnol 59:211–216. https://doi.org/10.1007/s00253-002-0986-8

    Article  CAS  PubMed  Google Scholar 

  62. De AJMB, Hidalgo-Dumont C, Pacheco N et al (2017) A novel programmable lysozyme-based lysis system in Pseudomonas putida for biopolymer production. Sci Rep 7:1–11. https://doi.org/10.1038/s41598-017-04741-2

    Article  CAS  Google Scholar 

  63. Rahman A, Linton E, Hatch AD et al (2013) Secretion of polyhydroxybutyrate in Escherichia coli using a synthetic biological engineering approach. J Biol Eng 7:1–9. https://doi.org/10.1186/1754-1611-7-24

    Article  CAS  Google Scholar 

  64. Maehara A, Ueda S, Nakano H, Yamane T (1999) Analyses of a polyhydroxyalkanoic acid granule-associated 16-kilodalton protein and its putative regulator in the pha locus of Paracoccus denitrificans. J Bacteriol 181:2914–2921. https://doi.org/10.1128/jb.181.9.2914-2921.1999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Sangkharak K, Wangsirikul P, Pichid N et al (2016) Partitioning of bromelain from pineapple stem (smooth cayenne) by aqueous two phase system and its application for recovery and purification of polyhydroxyalkanoate. Chiang Mai J Sci 43:794–807

    CAS  Google Scholar 

Download references

Acknowledgements

This work was financial supported by the National Commission for Scientific and Technological Research (CONICYT)—Chile, with the Science Project for doctoral studies in Chile #21191476. Also, thanks for the Financial support: Proyecto Anillo ACT 172128. Genomics and Applied Microbiology for Biodegradation and Bioproducts (GAMBIO).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mara Cea.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gonzalez, K., Navia, R., Liu, S. et al. Biological Approaches in Polyhydroxyalkanoates Recovery. Curr Microbiol 78, 1–10 (2021). https://doi.org/10.1007/s00284-020-02263-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-020-02263-1

Navigation