Skip to main content
Log in

A Novel Isolate (S15) of Streptomyces griseobrunneus Produces 1-Dodecanol

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

One-dodecanol was identified to be the predominant secondary metabolite of a novel isolate (S15) of Streptomyces griseobrunneus. For its demonstration, secondary metabolite extracts were electrophoresed by sodium dodecyl sulphate–polyacrylamide gel electrophoresis (SDS–PAGE). A yellowish unique band was then cut out from the gel and its metabolite content was eluted in n-butanol. GC–MS analysis indicated that more than 93% of the of the elution material were 1-dodecanol. The compound was further characterized by FTIR and 13C NMR analyses. Dendrogram built on the basis of 16S rRNA gene sequence indicated that the isolate S15 was a member of Streptomyces griseobrunneus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ritacco FV, Haltli B, Janso JE, Greenstein M, Bernan VS (2003) Dereplication of Streptomyces soil isolates and detection of specific biosynthetic genes using an automated ribotyping instrument. J IndMicrobiolBiotechnol 30:472–479. https://doi.org/10.1007/s10295-003-0038-0

    Article  CAS  Google Scholar 

  2. Demain AL (1999) Pharmaceutically active secondary metabolites of microorganisms. ApplMicrobiolBiotechnol 52:455–463. https://doi.org/10.1007/s002530051546

    Article  CAS  Google Scholar 

  3. Hopwood DA, Bibb MJ, Chater KF, Janssen GR, Malpartida F, Smith CP (1986) Regulation of gene expression in antibiotic-producing Streptomyces. In: Booth IR, Higgins CF (eds) Regulation of gene expression-25 years on. Cambridge University Press, Cambridge, pp 257–276

    Google Scholar 

  4. Madigan M, Martinko J (2005) Brock biology of microorganisms, 11th edn. Prentice-Hall, New Jersey, USA

    Google Scholar 

  5. Chater KF (2016) Recent advances in understanding Streptomyces. F1000Research 5:2795. https://doi.org/10.12688/f1000research.9534.1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bentley SD, Chater KF, Cerdeno-Tarraga AM, Challis GL, Thomson NR, James KD, Harris DE, Quail MA et al (2002) Complete genome sequence of the model actinomyceteStreptomyces coelicolor A3(2). Nature 417(6885):141–147. https://doi.org/10.1038/417141a

    Article  PubMed  Google Scholar 

  7. Williams ST, Entwistle S, Kurylowicz W (1974) The morphology of Streptomyces growing in media used for commercial production of antibiotics. Microbios 11A:47–60

    Google Scholar 

  8. Pirt SJ (1967) A kinetic study of the mode of growth of surface colonies of bacteria and fungi. J Gen Microbiol 47:181–197. https://doi.org/10.1099/00221287-47-2-181

    Article  CAS  PubMed  Google Scholar 

  9. Martin JF, Demain AL (1980) Control of antibiotic synthesis. Microbiol Rev 44:230–251

    Article  CAS  Google Scholar 

  10. van Keulen G, Dyson PJ (2014) Production of specialized metabolites by Streptomyces coelicolor A3 (2). ApplMicrobiol 89:217–266. https://doi.org/10.1016/B978-0-12-800259-9.00006-8

    Article  Google Scholar 

  11. Oskay M (2011) Effects of some environmental conditions on biomass and antimicrobial metabolite production by Streptomyces sp., KGG32. Int J AgricBiol 13:317–324

    CAS  Google Scholar 

  12. Ren H, Zhang P, Liu C, Xue Y, Lian B (2009) The potential use of bacterium strain R219 for controlling of the bloom-forming cyanobacteria in freshwater lake. World J MicrobiolBiotechnol 26:465–472. https://doi.org/10.1007/s11274-009-0192-2

    Article  CAS  Google Scholar 

  13. Mureşan EA, Muste S, Socacı SA, Vlaıc RA, Racolţa E, Mureşan V (2014) Volatile compounds profile during storage of Ionathan, Starkrimson and Golden delicious apple varieties. Bull UASVM Food SciTechnol 71:173–178. https://doi.org/10.15835/buasvmcn-fst:10851

    Article  Google Scholar 

  14. Saini S (2016) Analyses of the volatile oil constituents of Landolphia owariensis p. BeauvInt J Educ Res 2:79–80

    Google Scholar 

  15. Chung HY, Cadwallader KR (1993) Volatile components in blue crab (Callinectes sapidus) meat and processing by-product. J Food Sci 58:1203–1207. https://doi.org/10.1111/j.1365-2621.1993.tb06148.x

    Article  CAS  Google Scholar 

  16. Motteran F, Nascimento RF, Nadai BM, Titato GM, Neto AJS, Silva EL, Varesche MBA (2019) Identification of anionic and nonionic surfactant and recalcitrants compounds in commercial laundry wastewater by GC–MS analysis after anaerobic fluidized bed reactor treatment. Water Air Soil Pollut 230:301. https://doi.org/10.1007/s11270-019-4357-9

    Article  CAS  Google Scholar 

  17. Watanabe K, Imai S, Mori YH (2005) Surfactant effects on hydrate formation in an unstirred gas/liquid system: an experimental study using HFC-32 and sodium dodecyl sulfate. ChemEngSci 60:4846–4857. https://doi.org/10.1016/j.ces.2005.03.043

    Article  CAS  Google Scholar 

  18. UshaNandhini S, Sudha S, Anusha JV, Manisha S (2018) Isolation, identification and extraction of antimicrobial compounds produced by Streptomyces sps from terrestrial soil. BiocatalAgricBiotechnol 5:317–321. https://doi.org/10.1016/j.bcab.2018.06.024

    Article  Google Scholar 

  19. Yavuz E, Gunes H, Bulut C, Harsa Ş, Yenidünya AF (2004) RFLP of 16S-ITS rDNA region to differentiate Lactobacilli at species level. World J Microbiol Biotech 20:535–537. https://doi.org/10.1023/B:WIBI.0000043151.09366.d7

    Article  CAS  Google Scholar 

  20. Wilson KH, Blitchington RB, Green RC (1990) Amplification of bacterial 16S ribosomal DNA with polymerase chain reaction. J ClinMicrobiol 28:1942–1946.

    CAS  Google Scholar 

  21. Katoh K, Asimenos G, Toh H (2009) Multiple alignment of DNA sequences with MAFFT. J BioinformSeq Anal 537:39–64. https://doi.org/10.1007/978-1-59745-251-9-3

    Article  CAS  Google Scholar 

  22. Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J MolEvol 16:111–120. https://doi.org/10.1007/BF01731581

    Article  CAS  Google Scholar 

  23. Çetinkaya S, Yenidünya AF, Arslan K, Arslan D, Doğan Ö, Daştan T (2020) Secondary metabolites of an of Streptomyces griseorubens isolate are predominantly pyrrole- and linoleic-acid like compounds. J Oleo Sci 69(10):1273–1280. https://doi.org/10.5650/jos.ess20161

    Article  CAS  PubMed  Google Scholar 

  24. Fleck W, Strauss D, Schönfeld C, Jungstand W, Seeber C, Prauser H (1972) Screening, fermentation, isolation, and characterization of Trypanomycin, a new antibiotic. Antimicrob Agents Chemother 1:385–391. https://doi.org/10.1128/AAC.1.5.385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. SDBS Spektrum No. 2400. https://www.aist.go.jp/RIODB/SDBS

Download references

Funding

The study was funded by the Sivas Cumhuriyet University Scientific Research Projects, Turkey (No. F-626).

Author information

Authors and Affiliations

Authors

Contributions

SC conceived and designed research. SC conducted experiments. SC contributed new reagents or analytical tools. SC analysed data. SC wrote the manuscript.

Corresponding author

Correspondence to Serap Çetinkaya.

Ethics declarations

Conflict of interest

Serap Çetinkaya declares that she has no conflict of interest.

Ethics statement

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 11 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Çetinkaya, S. A Novel Isolate (S15) of Streptomyces griseobrunneus Produces 1-Dodecanol. Curr Microbiol 78, 144–149 (2021). https://doi.org/10.1007/s00284-020-02261-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-020-02261-3

Navigation