Skip to main content

Advertisement

Log in

Cell-Free Lactobacillus sp Supernatants Modulate Staphylococcus aureus Growth, Adhesion and Invasion to Human Osteoblast (HOB) Cells

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

The increase of antibiotic resistance has become a problem. Probiotic bacteria play an important role in preventive/supportive medicine. Therefore, we examined the inhibitory effects of four different Lactobacillus species’ (L. acidophilus-La, L. plantarum-Lp, L. fermentum-Lf and L. rhamnosus-Lr) cell-free supernatants (CFSs) on growth, adhesion, invasion, and biofilm formation of Staphylococcus aureus and effects of S. aureus, CFSs, and S. aureus-CFSs co-existence on human osteoblast (HOB) cell viability. Growth alterations were measured spectrophotometrically. Adhesive/invasive bacterial counts were detected by colony counting. Biofilm was evaluated using microtiter plate assay. The MTT assay was used for detection of HOB cell viability. The growth of MSSA significantly (P < 0.01) decreased in the presence of two CFSs (Lf and Lr) (P < 0.01); the growth of MRSA significantly (P < 0.05) reduced in the presence of La CFSs. All tested CFSs were found to reduce adhesion and invasion of MSSA (P < 0.0001). The adhesion of MRSA was enhanced (P < 0.0001) in the presence of all CFSs except La and the invasion of MRSA was decreased (P < 0.01) in the presence of Lr and Lf CFSs. All tested CFSs were shown to inhibit biofilm formation significantly (P < 0.0001). The reduction of S. aureus infected HOB cell viability and exposed to all CFSs except Lr that was found to be significant (P < 0.0001). The viability of HOB cell during co-incubation with MSSA and CFSs was shown to be decreased significantly. However co-existence of MRSA and CFSs did not alter HOB cell viability. These results suggested that lactobacilli as probiotics have low protective effects on MRSA-infected host cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. FAO/WHO (2001) Joint FAO/WHO Expert consultation on evaluation of health and nutritional properties of probiotics in food including powder milk with live lactic acid bacteria. https://www.who.int/foodsafety/publications/fs_management/en/probiotics.pdf. Accessed 13 Dec 2019

  2. Lash BW, Mysliwiec TH, Gourama H, Mysliwiec TH (2005) Detection and partial characterization of a broad-range bacteriocin produced by Lactobacillus plantarum (ATCC 8014). Food Microbiol 22:199–204

    CAS  Google Scholar 

  3. Oelschlaeger TA (2010) Mechanisms of probiotic actions—a review. Int J Med Microbiol 300:57–62

    CAS  PubMed  Google Scholar 

  4. Todorov SD, Meincken M, Dicks LM (2006) Factors affecting the adsorption of bacteriocins ST194BZ and ST23LD to Lactobacillus sakei and Enterococcus sp. J Gen Appl Microbiol 52:159–167

    CAS  PubMed  Google Scholar 

  5. Morelli L, Zonenenschain D, Piano M, Cognein P (2004) Utilization of the intestinal tract as a delivery system for urogenital probiotics. J Clin Gastroenterol 38:107–110

    Google Scholar 

  6. Servin AL (2004) Antagonistic activities of lactobacilli and bifidobacteria against microbial pathogens. FEMS Microbiol Rev 28:405–440

    CAS  PubMed  Google Scholar 

  7. Wu CC, Lin CT, Wu CY, Peng WS, Lee MJ, Tsai YC (2015) Inhibitory effect of Lactobacillus salivarius on Streptococcus mutans biofilm formation. Mol Oral Microbiol 30:16–26

    CAS  PubMed  Google Scholar 

  8. Wagner RD, Johnson SJ (2012) Probiotic lactobacillus and estrogen effects on vaginal epithelial gene expression responses to Candida albicans. J Biomed Sci 19:58

    PubMed  PubMed Central  Google Scholar 

  9. Juárez Tomás MS, Wiese B, Nader-Macías ME (2005) Effects of culture conditions on the growth and auto-aggregation ability of vaginal Lactobacillus johnsonii CRL 1294. J Appl Microbiol 99:1383–1391

    PubMed  Google Scholar 

  10. Miyazaki Y, Kamiya S, Hanawa T, Fukuda M, Kawakami H, Takahashi H, Yokota H (2010) Effect of probiotic bacterial strains of Lactobacillus, Bifidobacterium, and Enterococcus on enteroaggregative Escherichia coli. J Infect Chem 16:10–18

    Google Scholar 

  11. Behnsen J, Deriu E, Sassone-Corsi M, Raffatellu M (2013) Probiotics: properties, examples, and specific applications. Cold Spring Harb Perspect Med 3:a010074

    PubMed  PubMed Central  Google Scholar 

  12. Turroni F, Ventura M, Buttó LF, Duranti S, O’Toole PW, Motherway MOC, van Sinderen D (2014) Molecular dialogue between the human gut microbiota and the host: a Lactobacillus and Bifidobacterium perspective. Cell Mol Life Sci 71:183–203

    CAS  PubMed  Google Scholar 

  13. Jung S, Park OJ, Kim AR, Ahn KB, Lee D, Kum KY, Yun CH, Han SH (2019) Lipoteichoic acids of lactobacilli inhibit Enterococcus faecalis biofilm formation and disrupt the preformed biofilm. J Microbiol 57:310–315

    CAS  PubMed  Google Scholar 

  14. Makino S, Ikegami S, Kano H, Sashihara T, Sugano H, Horiuchi H, Saito T, Oda M (2006) Immunomodulatory effects of polysaccharides produced by Lactobacillus delbrueckii ssp. bulgaricus OLL1073R-1. J Dairy Sci 89:2873–2881

    CAS  PubMed  Google Scholar 

  15. Stoyancheva G, Marzotto M, Dellaglio F, Torriani S (2014) Bacteriocin production and gene sequencing analysis from vaginal Lactobacillus strains. Arch Microbiol 196:645–653

    CAS  PubMed  Google Scholar 

  16. Tomaro-Duchesneau C, Saha S, Malhotra M, Coussa-Charley M, Al-Salami H, Jones M, Prakash S (2012) Lactobacillus fermentum NCIMB 5221 has a greater ferulic acid production compared to other ferulic acid esterase producing Lactobacilli. Int J Probiotics Prebiotics 7(1):23–32

    Google Scholar 

  17. Karska-Wysocki B, Bazo M, Smoragiewicz W (2010) Antibacterial activity of Lactobacillus acidophilus and Lactobacillus casei against methicillin-resistant Staphylococcus aureus (MRSA). Microbiol Res 165:674–686

    PubMed  Google Scholar 

  18. Nigam A, Kumar A, Madhusuda HV, Bhola N (2012) In-vitro Screening of antibacterial activity of lactic acid bacteria against common enteric pathogens. J Biomed Sci 1:4

    Google Scholar 

  19. Saha S, Tomaro-Duchesneau C, Malhotra M, Tabrizian M, Prakash S (2012) Suppression of Streptococcus mutans and Candida albicans by probiotics: an in vitro study. Dentistry 2(6):141–148

    Google Scholar 

  20. Khodaii Z, Ghaderian SMH, Natanzi MM (2017) Probiotic bacteria and their supernatants protect enterocyte cell lines from enteroinvasive Escherichia coli (EIEC) invasion. Int J Mol Cell Med 6:183

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Nantavisai K, Puttikamonkul S, Chotelersak K, Taweechotipatr M (2018) In vitro adhesion property and competition against enteropathogens of Lactobacillus strains isolated from Thai infants. Songklanakarin J Sci Tec 40:69–74

    CAS  Google Scholar 

  22. Hugo AA, Kakisu E, De Antoni GL, Pérez PF (2008) Lactobacilli antagonize biological effects of enterohaemorrhagic Escherichia coli in vitro. Lett Appl Microbiol 46:613–619

    CAS  PubMed  Google Scholar 

  23. Castilho IG, Dantas STA, Langoni H, Araújo JP Jr, Fernandes A Jr, Alvarenga FC, Maia L, Cagnini DQ, Rall VL (2017) Host-pathogen interactions in bovine mammary epithelial cells and HeLa cells by Staphylococcus aureus isolated from subclinical bovine mastitis. J Dairy Sci 100:6414–6421

    CAS  PubMed  Google Scholar 

  24. Artini M, Scoarughi GL, Papa R, Cellini A, Carpentieri A, Pucci P, Amoresano A, Gazzola S, Cocconcelli PS, Selan L (2011) A new anti-infective strategy to reduce adhesion-mediated virulence in Staphylococcus aureus affecting surface proteins. Int J Immunopathol Pharmacol 24:661–672

    CAS  PubMed  Google Scholar 

  25. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methol 65:55–63

    CAS  Google Scholar 

  26. Christensen GD, Simpson WA, Younger JJ, Baddour LM, Barrett FF, Melton DM, Beachey EH (1985) Adherence of coagulase-negative staphylococci to plastic tissue culture plates: a quantitative model for the adherence of staphylococci to medical devices. J Clin Microbiol 22:996–1006

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Bohora AA, Kokate SR (2017) Good bugs vs bad bugs: evaluation of inhibitory effect of selected probiotics against Enterococcus faecalis. J Contemp Dent Pract 18:312–316

    PubMed  Google Scholar 

  28. Bulgasem BY, Lani MN, Hassan Z, Yusoff WMW, Fnaish SG (2016) Antifungal activity of lactic acid bacteria strains isolated from natural honey against pathogenic Candida species. Mycobiology 44:302–309

    PubMed  PubMed Central  Google Scholar 

  29. Delley M, Bruttin A, Richard M, Affolter M, Rezzonico E, Brück WM (2015) In vitro activity of commercial probiotic Lactobacillus strains against uropathogenic Escherichia coli. FEMS Microbiol Lett 362:13

    Google Scholar 

  30. Liu J, Hu D, Chen Y, Huang H, Zhang H, Zhao J, Gu Z, Chen W (2018) Strain-specific properties of Lactobacillus plantarum for prevention of Salmonella infection. Food Funct 9:3673–3682

    CAS  PubMed  Google Scholar 

  31. Montecinos FEM, Jofre FM, Amendola I, Goncalves CR, Leao MVP, Dos Santos SSF (2016) Relationship between the probiotic Lactobacillus rhamnosus and Enterococcus faecalis during the biofilm formation. Afr J Microbiol Res 10:1182–1186

    CAS  Google Scholar 

  32. Mohammedsaeed W, McBain AJ, Cruickshank SM, O’Neill CA (2014) Lactobacillus rhamnosus GG inhibits the toxic effects of Staphylococcus aureus on epidermal keratinocytes. Appl Environ Microbiol 80:5773–5781

    PubMed  Google Scholar 

  33. Raj A, Bhati P, Bhadekar R (2017) Effect of lactic acid bacteria on biofilm formation by Streptococcus mutans: an ın vitro study. Int J Pharm Sci Res 8:2533–2538

    CAS  Google Scholar 

  34. Vacheva A, Georgieva R, Danova S, Mihova R, Marhova M, Kostadinova S, Vasileva K, Bivolarska M, Stoitsova S (2012) Modulation of Escherichia coli biofilm growth by cell-free spent cultures from lactobacilli. Open Life Sci 7:219–229

    CAS  Google Scholar 

  35. Kim Y, Kim SH, Whang KY, Kim YJ, Oh S (2018) Inhibition of Escherichia coli O157: H7 attachment by interactions between lactic acid bacteria and intestinal epithelial cells. J Microbiol Biotech 18:1278–1285

    Google Scholar 

  36. Merghni A, Dallel I, Noumi E, Kadmi Y, Hentati H, Tobji S, Amor AB, Mastouri M (2017) Antioxidant and antiproliferative potential of biosurfactants isolated from Lactobacillus casei and their anti-biofilm effect in oral Staphylococcus aureus strains. Microb Pathog 104:84–89

    CAS  PubMed  Google Scholar 

  37. Poppi LB, Rivaldi JD, Coutinho TS, Astolfi-Ferreira CS, Ferreira AJP, Mancilha IM (2015) Effect of Lactobacillus sp. isolates supernatant on Escherichia coli O157: H7 enhances the role of organic acids production as a factor for pathogen control. Pesq Vet Bras 35:353–359

    Google Scholar 

  38. Aminnezhad S, Kermanshahi RK, Ranjbar R (2015) Evaluation of synergistic interactions between cell-free supernatant of Lactobacillus strains and amikacin and gentamicin against Pseudomonas aeruginosa. Jundishapur J Microbiol 8:4

    Google Scholar 

  39. Kim JU, Kim Y, Han KS, Oh S, Whang KY, Kim JN, Kim SH (2006) Function of cell-bound and released exopolysaccharides produced by Lactobacillus rhamnosus ATCC 9595. J Microbiol Biotechnol 16:939–945

    CAS  Google Scholar 

  40. Stecher B, Hardt WD (2011) Mechanisms controlling pathogen colonization of the gut. Curr Opin Microbiol 14:82–91

    CAS  PubMed  Google Scholar 

  41. Jayashree S, Karthikeyan R, Nithyalakshmi S, Ranjani J, Gunasekaran P, Rajendhran J (2018) Anti-adhesion property of the potential probiotic strain Lactobacillus fermentum 8711 against methicillin-resistant Staphylococcus aureus (MRSA). Front Microbiol 9:411

    PubMed  PubMed Central  Google Scholar 

  42. Alvarez-Olmos MI, Oberhelman RA (2001) Probiotic agents and infectious diseases: a modern perspective on a traditional therapy. Clin Infect Dis 32(11):1567–1576

    CAS  PubMed  Google Scholar 

  43. Gutiérrez S, Martínez-Blanco H, Rodríguez-Aparicio LB, Ferrero MA (2016) Effect of fermented broth from lactic acid bacteria on pathogenic bacteria proliferation. J Dairy Sci 99(4):2654–2665

    PubMed  Google Scholar 

  44. Hor YY, Liong MT (2014) Use of extracellular extracts of lactic acid bacteria and bifidobacteria for the inhibition of dermatological pathogen Staphylococcus aureus. Dermatol Sin 32(3):141–147

    Google Scholar 

  45. Cadieux PA, Burton J, Devillard E et al (2009) Lactobacillus by-products inhibit the growth and virulence ofuropathogenic Escherichia coli. J Physiol Pharmacol 60(6):13–18

    PubMed  Google Scholar 

  46. Chen CC, Lai CC, Huang HL, Huang WY, Toh HS, Weng TC et al (2019) Antimicrobial activity of Lactobacillus species against carbapenem-resistant Enterobacteriaceae. Front Microbiol 10:789

    PubMed  PubMed Central  Google Scholar 

  47. Terraf MCL, Tomás MSJ, Rault L, Le Loir Y, Even S, Nader-Macías MEF (2017) In vitro effect of vaginal lactobacilli on the growth and adhesion abilities of uropathogenic Escherichia coli. Arch Microbiol 199(5):767–774

    Google Scholar 

  48. Singh N, Sharma C, Gulhane RD, Rokana N, Singh BP, Puniya AK, Panwar H (2018) Inhibitory effects of lactobacilli of goat’s milk origin against growth and biofilm formation by pathogens: an in vitro study. Food Biosci 22:129–138

    CAS  Google Scholar 

  49. Wasfi R, Abd El-Rahman OA, Zafer MM, Ashour HM (2018) Probiotic Lactobacillus sp. inhibit growth, biofilm formation and gene expression of caries-inducing Streptococcus mutans. J Cell Mol Med 22(3):1972–1983

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Castellano P, Ibarreche MP, Borges LL, Arias FN, Ross GR, De Martinis EP (2018) Lactobacillus spp. impair the ability of Listeria monocytogenes FBUNT to adhere to and invade Caco-2 cells. Biotechnol Lett 40(8):1237–1244

    CAS  PubMed  Google Scholar 

  51. Bilkova A, Sepova HK, Bukovsky M, Bezakova L (2011) Antibacterial potential of lactobacilli isolated from a lamb. Vet Med 56(56):319–324

    CAS  Google Scholar 

  52. Kaur S, Sharma P, Kalia N, Singh J, Kaur S (2018) Anti-biofilm properties of the fecal probiotic Lactobacilli against Vibrio spp. Front Cell Infect Microbiol 8:120

    PubMed  PubMed Central  Google Scholar 

  53. Yan X, Gu S, Cui X, Shi Y, Wen S, Chen H, Ge J (2019) Antimicrobial, anti-adhesive and anti-biofilm potential of biosurfactants isolated from Pediococcus acidilactici and Lactobacillus plantarum against Staphylococcus aureus CMCC26003. Microb Pathog 127:12–20

    CAS  PubMed  Google Scholar 

  54. Mukherjee S, Ramesh A (2015) Bacteriocin-producing strains of Lactobacillus plantarum inhibit adhesion of Staphylococcus aureus to extracellular matrix: quantitative insight and implications in antibacterial therapy. J Med Microbiol 64(12):1514–1526

    CAS  PubMed  Google Scholar 

  55. Ren D, Li C, Qin Y, Yin R, Li X, Tian M et al (2012) Inhibition of Staphylococcus aureus adherence to Caco-2 cells by lactobacilli and cell surface properties that influence attachment. Anaerobe 18(5):508–515

    CAS  PubMed  Google Scholar 

  56. He X, Zeng Q, Puthiyakunnon S, Zeng Z, Yang W, Qiu J et al (2017) Lactobacillus rhamnosus GG supernatant enhance neonatal resistance to systemic Escherichia coli K1 infection by accelerating development of intestinal defense. Sci Rep 7:1–14

    Google Scholar 

  57. Jankowska A, Laubitz D, Antushevich H, Zabielski R, Grzesiuk E (2008) Competition of Lactobacillus paracasei with Salmonella enterica for adhesion to Caco-2 cells. BioMed Res Int. https://doi.org/10.1155/2008/357964

    Article  Google Scholar 

  58. Bouchard DS, Rault L, Berkova N, Le Loir Y, Even S (2013) Inhibition of Staphylococcus aureus invasion into bovine mammary epithelial cells by contact with live Lactobacillus casei. Appl Environ Microbiol 79(3):877–885

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Hirano J, Yoshida T, Sugiyama T, Koide N, Mori I, Yokochi T (2003) The effect of Lactobacillus rhamnosus on enterohemorrhagic Escherichia coli infection of human intestinal cells in vitro. Microbiol Immunol 47(6):405–409

    CAS  PubMed  Google Scholar 

  60. Alamdary SZ, Bakhshi B, Soudi S (2018) The anti-apoptotic and anti-inflammatory effect of Lactobacillus acidophilus on Shigella sonnei and Vibrio cholerae interaction with intestinal epithelial cells: a comparison between invasive and non-invasive bacteria. PLoS ONE 13(6):1–16

    Google Scholar 

  61. Moorthy G, Murali MR, Devaraj SN (2010) Lactobacilli inhibit Shigella dysenteriae 1 induced pro-inflammatory response and cytotoxicity in host cells via impediment of Shigella–host interactions. Digest Liv Dis 42(1):33–39

    CAS  Google Scholar 

  62. Campana R, Federici S, Ciandrini E, Baffone W (2012) Antagonistic activity of Lactobacillus acidophilus ATCC 4356 on the growth and adhesion/invasion characteristics of human Campylobacter jejuni. Curr Microbiol 64(4):371–378

    CAS  PubMed  Google Scholar 

  63. Zamani H, Rahbar S, Garakoui SR, Sahebi AA, Jafari H (2017) Antibiofilm potential of Lactobacillus plantarum spp. cell free supernatant (CFS) against multidrug resistant bacterial pathogens. Pharm Biomed Res 3(2):39–44

    CAS  Google Scholar 

  64. Frickmann H, Klenk C, Warnke P, Redanz S, Podbielski A (2018) Influence of probiotic culture supernatants on in vitro biofilm formation of staphylococci. Eur J Microbiol Immunol 8(4):119–127

    CAS  Google Scholar 

  65. Koohestani M, Moradi M, Tajik H, Badali A (2018) Effects of cell-free supernatant of Lactobacillus acidophilus LA5 and Lactobacillus casei 431 against planktonic form and biofilm of Staphylococcus aureus. Vet Res For 9(4):301

    Google Scholar 

  66. Khiralla GM, Mohamed EA, Farag AG, Elhariry H (2015) Antibiofilm effect of Lactobacillus pentosus and Lactobacillus plantarum cell-free supernatants against some bacterial pathogens. J Biotech Res 6:86

    CAS  Google Scholar 

  67. Chen ZY, Hsieh YM, Huang CC, Tsai CC (2017) Inhibitory effects of probiotic Lactobacillus on the growth of human colonic carcinoma cell line HT-29. Molecules 22(1):107

    PubMed Central  Google Scholar 

  68. Sadeghi-Aliabadi H, Mohammadi F, Fazeli H, Mirlohi M (2014) Effects of Lactobacillus plantarum A7 with probiotic potential on colon cancer and normal cells proliferation in comparison with a commercial strain. Iran J Bas Med Sci 17(10):815

    Google Scholar 

  69. Nami Y, Abdullah N, Haghshenas B, Radiah D, Rosli R, Khosroushahi AY (2014) Probiotic potential and biotherapeutic effects of newly isolated vaginal Lactobacillus acidophilus 36YL strain on cancer cells. Anaerobe 28:29–36

    CAS  PubMed  Google Scholar 

  70. Motevaseli E, Shirzad M, Akrami SM, Mousavi AS, Mirsalehian A, Modarressi MH (2013) Normal and tumour cervical cells respond differently to vaginal lactobacilli, independent of pH and lactate. J Med Microbiol 62(7):1065–1072

    PubMed  Google Scholar 

  71. Burkholder KM, Bhunia AK (2009) Salmonella enterica serovar Typhimurium adhesion and cytotoxicity during epithelial cell stress is reduced by Lactobacillus rhamnosus GG. Gut Pathog 1(1):14

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Concept: FKY, DG, and MAK. Data collection & Processing: FKY, DG, and GİG. Analysis & Interpretation: FKY, DG, and GİG. Literature Research: FKY, DG, and MAK. Writing: FKY, DG, and MAK. Critical Reviews: FKY, DG, GİG, and MAK.

Corresponding author

Correspondence to Fatma Kalaycı Yüksek.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalaycı Yüksek, F., Gümüş, D., Gündoğan, G.İ. et al. Cell-Free Lactobacillus sp Supernatants Modulate Staphylococcus aureus Growth, Adhesion and Invasion to Human Osteoblast (HOB) Cells. Curr Microbiol 78, 125–132 (2021). https://doi.org/10.1007/s00284-020-02247-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-020-02247-1

Navigation