Skip to main content
Log in

Investigation on Microbial Biodeterioration of the Stone Monuments in Yildiz Technical University—Yildiz Campus—Istanbul—Turkey

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

The stone samples of historical monuments around Yıldız Technical University Besiktas Campus were investigated using DNA extraction-PCR-DGGE methods, scanning electron microscopy (SEM), XRF, and other analytical methods to assess stone decay over the centuries. Microbial diversity was examined by classical cultivation and modern diagnostic methods besides modern analysis techniques. The number of the microorganisms in per gram of stone samples was calculated by microbial culture methods. SEM analysis showed that stone surfaces have too many pores, decaying pieces and microbial colony. It is put forth by XRF analysis that stone materials have some elements serving the growth of microorganisms. It was concluded that there is a close connection the stone structure and microbial growth, most likely mineralogical composition, hardness and porosity of stone. Cyanobacterial microorganisms lived on stone surfaces were also determined using denaturing gradient gel electrophoresis (DGGE) of PCR-amplified 16S rRNA gene fragments. It was revealed DNA-based molecular analysis of 16S rRNA that 23 bacterial/Cyanobacterial clones were inhabited to stone materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

SEM analysis of the samples taken from the research points

Fig. 3

Similar content being viewed by others

References

  1. Hardy D (2010) Orienting Istanbul: Cultural capital of Europe? In: Göktürk D, Soysal L, Tureli İ (eds) First published in 2010 by Routledge 2 Park Square, Milton Park, Abingdon, UK

  2. Richardson T (2019) The Rough Guide to Istanbul 1 (Rough Guide Travel Guides) https://www.roughguides.com/destinations/europe/turkey/istanbul-around

  3. Warscheid T, Braams J (2000) Biodeterioration of stone: a review. Int Biodeterior Biodegradation 46(4):343–368

    Article  CAS  Google Scholar 

  4. Nuhoglu Y (2004) The biodeteriorative action of microorganisms and the effects on stone monuments under air pollution and continental-cold climatic condition in Erzurum. Turkey Fresenius Environ Bull 13(7):591–599

    CAS  Google Scholar 

  5. Farooq M, Hassan M, Gull F (2015) Mycobial deterioration of stone monuments of Dharmarajika. Taxila J Microbiol Exp 2:36

    Google Scholar 

  6. Boniek D, de Castro MI, Paiva C, de Paula LU, Dos Santos A, de Resende SM (2017) Ecology and identification of environmental fungi and metabolic processes involved in the biodeterioration of Brazilian soapstone historical monuments. Lett Appl Microbiol 65(5):431–438

    Article  PubMed  CAS  Google Scholar 

  7. Tiano P (2016) Biodeterioration of stone monuments a worldwide issue. Open Conf Proc J 7(1):29–38

    Article  CAS  Google Scholar 

  8. Cameotra SS, Dakal TC (2012) Carbonatogenesis: microbial contribution to the conservation of monuments and artwork of stone. Conserv Sci Cult Herit 12(1):79–108

    Google Scholar 

  9. Nuhoglu Y, Oguz E, Uslu H, Ozbek A, Ipekoglu B, Ocak I, Hasenekoglu I (2006) The accelerating effects of the microorganisms on biodeterioration of stone monuments under air pollution and continental-cold climatic conditions in Erzurum. Turkey Sci Total Environ 364(1–3):272–283

    Article  PubMed  CAS  Google Scholar 

  10. Zucconi L, Gagliardi M, Isola D, Onofri S, Andaloro MC, Pelosi C, Pogliani P, Selbmann L (2012) Biodeterioration agents dwelling in or on the wall paintings of the Holy Saviour’s cave (Vallerano, Italy). Int Biodeterior Biodegrad 70:40–46

    Article  CAS  Google Scholar 

  11. Herrera LK, Videla HA (2009) Surface analysis and materials characterization for the study of biodeterioration and weathering effects on cultural property. Int Biodeterior Biodegrad 63:803–822

    Google Scholar 

  12. Ng DH, Kumar A, Cao B (2016) Microorganisms meet solid minerals: interactions and biotechnological applications. Appl Microbiol Biotechnol 100(16):6935–6946

    Article  PubMed  CAS  Google Scholar 

  13. Scheerer S, Ortega-Morales O, Gaylarde C (2009) Microbial deterioration of stone monuments—an updated overview. Adv Appl Microbiol 66:97–139

    Article  PubMed  CAS  Google Scholar 

  14. Watkınson SC, Boddy L, Money NP (2016) The Fungi, 3rd edn. Academic Press, London

    Google Scholar 

  15. Becerra J, Zaderenko A, Sayagués MJ, Ortiz R, Ortiz P (2018) Synergy achieved in silver-TiO2 nanocomposites for the inhibition of biofouling on limestone. Build Environ 141:80–90

    Article  Google Scholar 

  16. Sand W, Bock E (1991) Biodeterioration of mineral materials by microorganisms biogenic sulfuric and nitric acid corrosion of concrete and natural stone. Geomicrobiol J 9(2–3):129–138

    Article  CAS  Google Scholar 

  17. Andrei AS, Păuşan MR, Tămaş T, Har N, Barbu-Tudoran L, Leopold N, Banciu HL (2017) Diversity and biomineralization potential of the epilithic bacterial communities inhabiting the oldest public stone monument of Cluj-Napoca (Transylvania, Romania). Front Microbiol 8:372

    Article  PubMed  PubMed Central  Google Scholar 

  18. Zhu T, Dittrich M (2016) Carbonate precipitation through microbial activities in natural environment, and their potential in biotechnology: a review. Front Bioeng Biotechnol 4:4

    Article  PubMed  PubMed Central  Google Scholar 

  19. Jimenez-Lopez C, Jroundi F, Pascolini C, Rodriguez-Navarro C, Pinar-Larrubia G, Rodriguez-Gallego M, González-Muñoz MT (2008) Consolidation of quarry calcarenite by calcium carbonate precipitation induced by bacteria activated among the microbiota inhabiting the stone. Int Biodeterior Biodegrad 62(4):352–363

    Article  CAS  Google Scholar 

  20. Mihajlovski A, Seyer D, Benamara H, Bousta F, Di Martino P (2015) An overview of techniques for the characterization and quantification of microbial colonization on stone monuments. Ann Microbiol 65(3):1243–1255

    Article  Google Scholar 

  21. Keshari N, Adhikary SP (2014) Diversity of cyanobacteria on stone monuments and building facades of India and their phylogenetic analysis. Int Biodeterior Biodegrad 90:45–51

    Article  CAS  Google Scholar 

  22. Mandal S, Rath J (2013) Algal colonization and its ecophysiology on the fine sculptures of terracotta monuments of Bishnupur, West Bengal, India. Int Biodeterior Biodegrad 84:291–299

    Article  CAS  Google Scholar 

  23. Tomaselli L, Margheri MC, Florenzano G (1979) Indagine Sperimentale Sul Ruolo Dei Cianobatteri e Dellemicroalghe Nel Deterioramento di Monumenti e Affreschi; Edited by: Dolar A, Yılmaz ES (2014) Kültürel Yapılarda Biyolojik Bozunma Mekanizmaları. Elektronik Mikrobiyoloji Dergisi TR 12(1):1–19

    Google Scholar 

  24. Miller AZ, Laiz L, Dionísio A, Macedo MF, Saiz-Jimenez C (2009) Growth of phototrophic biofilms from limestone monuments under laboratory conditions. Int Biodeterior Biodegrad 63(7):860–886

    Article  CAS  Google Scholar 

  25. Dhami NK, Reddy MS, Mukherjee A (2014) Application of calcifying bacteria for remediation of stones and cultural heritages. Front Microbiol 5:304

    Article  PubMed  PubMed Central  Google Scholar 

  26. Grbić ML, Subakov-Simić G, Krizmanić J, Lađić V (2009) cyanobacterial, algal and fungal biofilm on sandstone substrata of Eiffels Lock in bečej (serbia). Bot Serbica 33(1):101–105

    Google Scholar 

  27. Macedo MF, Miller AZ, Dionı´sioSaiz-Jimenez AC (2009) Biodiversity of cyanobacteria and green algae on monuments in the Mediterranean Basin: an overview. Microbiology 155:3476–3490

    Article  PubMed  CAS  Google Scholar 

  28. Komárek J, Johansen JR (2015) Filamentous cyanobacteria. In: Wehr JD, Sheath RG (eds) Freshwater Algae of North America. Elsevier, New York, pp 135–235

    Chapter  Google Scholar 

  29. Mühlsteinová R, Hauer T (2013) Pilot survey of cyanobacterial diversity from the neighborhood of San Gerardo de Rivas, Costa Rica with a brief summary of current knowledge of terrestrial cyanobacteria in Central America. Brazilian J Bot 36(4):299–307

    Article  Google Scholar 

  30. Elster J, Nedbalová L, Vodrážka R, Láska K, Haloda J, Komárek J (2016) Unusual biogenic calcite structures in two shallow lakes, James Ross Island. Antarct Biogeosci 13(2):535–549

    Article  CAS  Google Scholar 

  31. Lochab S, Kumar PA, Raghuram N (2014) Molecular characterization of nitrate uptake and assimilatory pathway in Arthrospira platensis reveals nitrate induction and differential regulation. Arch Microbiol 196(6):385–394

    Article  PubMed  CAS  Google Scholar 

  32. Caneva G, Bartoli F, Ceschin S, Salvadori O, Futagami Y, Salvati L (2015) Exploring ecological relationships in the biodeterioration patterns of Angkor temples (Cambodia) along a forest canopy gradient. J Cult Herit 16(5):728–735

    Article  Google Scholar 

  33. Sáiz-Jiménez C (1997) Biodeterioration vs biodegradation: the role of microorganisms in the removal of pollutants deposited on historic buidlings. Int Biodeterior Biodegrad 40(2–4):225–232

    Article  Google Scholar 

  34. Gorbushina AA (2007) Life on the rocks. Environ Microbiol 9(7):1613–1631

    Article  PubMed  CAS  Google Scholar 

  35. Stan-Lotter H, Fendrihan S (2012) Adaption of microbial life to environmental extremes, novel research results and application. Springer, Vienna

    Book  Google Scholar 

  36. Fay P (1965) Heterotrophy and nitrogen fixation in Chlorogloea fritschii. Microbiology 39(1):11–20

    CAS  Google Scholar 

  37. Wang Q, Cheng C, He L-Y, Huang Z, Sheng X-F (2014) Chitinophaga jiangningensis sp. nov., a mineral-weathering bacterium. Int J System Evol Microbiol 64(1):260–265

    Article  CAS  Google Scholar 

  38. Manso S, Calvo-Torras AC, De Belie N, Segura I, Aguado A (2015) Evaluation of natural colonisation of cementitious materials: effect of bioreceptivity and environmental conditions. Sci Total Environ 512–513(1):444–453

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to the Department of Scientific Research Project Center at Yildiz Technical University for supporting this research under the Project No. 2012-05-02-KAP01.

Author information

Authors and Affiliations

Authors

Contributions

This manuscript is created from Msc Thesis of AO and supported with Department of Scientific Research Project Center, Yildiz Technical University Project Number: 2012–05-02-KAP01. Prof. Dr. YN is the supervisor of Msc thesis, manager of the project and head of the scientific team. Msc. AO prepared a master thesis on this subject and studied in this research area and identified the bacteria, cyanobacteria and fungi in PCR and classic methods. Assoc. Prof. Dr. GOE is researcher of the project and performed the isolation and identification of microorganisms via classic method. Dr. EA took part in isolation and diagnosis of microorganisms by classical analysis methods and taking of SEM images.

Corresponding author

Correspondence to Yasar Nuhoglu.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Özdemir, A., Erguven, G.O., Adar, E. et al. Investigation on Microbial Biodeterioration of the Stone Monuments in Yildiz Technical University—Yildiz Campus—Istanbul—Turkey. Curr Microbiol 77, 3288–3299 (2020). https://doi.org/10.1007/s00284-020-02171-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-020-02171-4

Navigation