Skip to main content
Log in

Molecular Surveillance of Multidrug-Resistant Acinetobacter baumannii

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Acinetobacter baumannii, a bacterial strain which demonstrates an elevated wide range multidrug resistance to commonly prescribed antibiotics, has been linked to recent major global outbreaks, raising a major clinical concern. Its reduced antibiotic susceptibility is closely related to the acquisition of a potent carbapenemase and/or intrinsic gene “over expression” through insertion sequences. Hence, this study aimed at investigating the antimicrobial susceptibility and molecular mechanisms underlying β-lactam resistance in A. baumannii, isolated at an academic medical centre. To understand the basis of resistance, 103 multidrug-resistant (MDR) A. baumannii isolates were collected, their antibiotic susceptibility was tested phenotypically, and then molecular analyses were performed, by testing a range of commonly encountered carbapenemases—OXA-51, OXA-23, NDM, VIM, and KPC. All strains demonstrated pan-resistance to most of the advanced antibiotics tested, including piperacillin/tazobactam, ceftazidime, cefepime, and ciprofloxacin. Moreover, majority of isolates exhibited resistance to imipenem (98.1%) and trimethoprim (90.3%). Approximately 50% of the strains showed meropenem, amikacin, and gentamycin resistance; however, lower resistance rate to tigecycline (4.9%) was noted. Moreover, isolates contained potent carbapenemases such as the intrinsic OXA-51 (89.3%), as well as the acquired resistant genes OXA-23 (68.9%), NDM (84.5%), and VIM (88.3%). The insertion sequence element ISAba1 was only detected in 35.9% of the strains. Potent resistant genes known to be carried on mobile genetic elements that aid the spread of highly resistant phenotypes were observed in a majority of isolates. These findings enforce the need for vigilant infection control measures and continuous surveillance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Villar M, Cano ME, Gato E et al (2014) Epidemiologic and clinical impact of Acinetobacter baumannii colonization and infection. Medicine (Baltimore). https://doi.org/10.1097/MD.0000000000000036

    Article  Google Scholar 

  2. Qureshi ZA, Hittle LE, O’Hara JA et al (2015) Colistin-resistant Acinetobacter baumannii: beyond carbapenem resistance. Clin Infect Dis 60:1295–1303. https://doi.org/10.1093/cid/civ048

    Article  PubMed  PubMed Central  Google Scholar 

  3. Cheon S, Kim M-J, Yun S-J et al (2016) Controlling endemic multidrug-resistant Acinetobacter baumannii in intensive care units using antimicrobial stewardship and infection control. Korean J Intern Med 31:367–374. https://doi.org/10.3904/kjim.2015.178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Chang Y, Luan G, Xu Y et al (2015) Characterization of carbapenem-resistant Acinetobacter baumannii isolates in a Chinese teaching hospital. Front Microbiol. https://doi.org/10.3389/fmicb.2015.00910

    Article  PubMed  PubMed Central  Google Scholar 

  5. Gordon NC, Wareham DW (2010) Multidrug-resistant Acinetobacter baumannii: mechanisms of virulence and resistance. Int J Antimicrob Agents 35:219–226. https://doi.org/10.1016/j.ijantimicag.2009.10.024

    Article  CAS  PubMed  Google Scholar 

  6. Memish ZA, Assiri A, Almasri M et al (2015) Molecular characterization of carbapenemase production among gram-negative bacteria in Saudi Arabia. Microb Drug Resist 21:307–314. https://doi.org/10.1089/mdr.2014.0121

    Article  CAS  PubMed  Google Scholar 

  7. Ghazawi A, Sonnevend A, Bonnin RA et al (2012) NDM-2 carbapenemase-producing Acinetobacter baumannii in the United Arab Emirates. Clin Microbiol Infect 18:E34–E36. https://doi.org/10.1111/j.1469-0691.2011.03726.x

    Article  CAS  PubMed  Google Scholar 

  8. Ibrahim ME (2019) Prevalence of Acinetobacter baumannii in Saudi Arabia: risk factors, antimicrobial resistance patterns and mechanisms of carbapenem resistance. Ann Clin Microbiol Antimicrob. https://doi.org/10.1186/s12941-018-0301-x

    Article  PubMed  PubMed Central  Google Scholar 

  9. Abdalhamid B, Hassan H, Itbaileh A, Shorman M (2014) Characterization of carbapenem-resistant Acinetobacter baumannii clinical isolates in a tertiary care hospital in Saudi Arabia. New Microbiol 37:65–73

    CAS  PubMed  Google Scholar 

  10. Turton JF, Ward ME, Woodford N et al (2006) The role of ISAba1 in expression of OXA carbapenemase genes in Acinetobacter baumannii. FEMS Microbiol Lett 258:72–77. https://doi.org/10.1111/j.1574-6968.2006.00195.x

    Article  CAS  PubMed  Google Scholar 

  11. Bahador A, Raoofian R, Pourakbari B et al (2015) Genotypic and antimicrobial susceptibility of carbapenem-resistant Acinetobacter baumannii: analysis of ISAba elements and blaOXA-23-like genes including a new variant. Front Microbiol. https://doi.org/10.3389/fmicb.2015.01249

    Article  PubMed  PubMed Central  Google Scholar 

  12. Magiorakos A-P, Srinivasan A, Carey RB et al (2012) Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect 18:268–281. https://doi.org/10.1111/j.1469-0691.2011.03570.x

    Article  CAS  PubMed  Google Scholar 

  13. Coelho J, Woodford N, Afzal-Shah M, Livermore D (2006) Occurrence of OXA-58-Like carbapenemases in Acinetobacter spp. collected over 10 years in three continents. Antimicrob Agents Chemother 50:756–758. https://doi.org/10.1128/AAC.50.2.756-758.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Afzal-Shah M, Woodford N, Livermore DM (2001) Characterization of OXA-25, OXA-26, and OXA-27, molecular class D β-lactamases associated with carbapenem resistance in clinical isolates of Acinetobacter baumannii. Antimicrob Agents Chemother 45:583–588. https://doi.org/10.1128/AAC.45.2.583-588.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ellington MJ, Kistler J, Livermore DM, Woodford N (2007) Multiplex PCR for rapid detection of genes encoding acquired metallo-β-lactamases. J Antimicrob Chemother 59:321–322. https://doi.org/10.1093/jac/dkl481

    Article  CAS  PubMed  Google Scholar 

  16. Zowawi HM, Sartor AL, Sidjabat HE et al (2015) Molecular epidemiology of carbapenem-resistant Acinetobacter baumannii isolates in the Gulf Cooperation Council States: dominance of OXA-23-type producers. J Clin Microbiol 53:896–903. https://doi.org/10.1128/JCM.02784-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ni W, Han Y, Zhao J et al (2016) Tigecycline treatment experience against multidrug-resistant Acinetobacter baumannii infections: a systematic review and meta-analysis. Int J Antimicrob Agents 47:107–116. https://doi.org/10.1016/j.ijantimicag.2015.11.011

    Article  CAS  PubMed  Google Scholar 

  18. Wang J, Pan Y, Shen J, Xu Y (2017) The efficacy and safety of tigecycline for the treatment of bloodstream infections: a systematic review and meta-analysis. Ann Clin Microbiol Antimicrob 16:24. https://doi.org/10.1186/s12941-017-0199-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Al Johani SM, Akhter J, Balkhy H et al (2010) Prevalence of antimicrobial resistance among gram-negative isolates in an adult intensive care unit at a tertiary care center in Saudi Arabia. Ann Saudi Med 30:364–369. https://doi.org/10.4103/0256-4947.67073

    Article  PubMed  PubMed Central  Google Scholar 

  20. Al-Sweih NA, Al-Hubail M, Rotimi VO (2012) Three distinct clones of carbapenem-resistant Acinetobacter baumannii with high diversity of carbapenemases isolated from patients in two hospitals in Kuwait. J Infect Public Health 5:102–108. https://doi.org/10.1016/j.jiph.2011.11.004

    Article  CAS  PubMed  Google Scholar 

  21. Al-Agamy MH, Jeannot K, El-Mahdy TS et al (2017) First detection of GES-5 carbapenemase-producing Acinetobacter baumannii isolate. Microb Drug Resist 23:556–562. https://doi.org/10.1089/mdr.2016.0152

    Article  CAS  PubMed  Google Scholar 

  22. Al-Agamy MH, Shibl AM, Ali MS et al (2014) Distribution of β-lactamases in carbapenem-non-susceptible Acinetobacter baumannii in Riyadh, Saudi Arabia. J Glob Antimicrob Resist 2:17–21. https://doi.org/10.1016/j.jgar.2013.08.004

    Article  PubMed  Google Scholar 

  23. El-Mahdy TS, Al-Agamy MH, Al-Qahtani AA, Shibl AM (2017) Detection of blaOXA-23-like and blaNDM-1 in Acinetobacter baumannii from the Eastern Region, Saudi Arabia. Microb Drug Resist 23:115–121. https://doi.org/10.1089/mdr.2015.0304

    Article  CAS  PubMed  Google Scholar 

  24. Al-Sweih NA, Al-Hubail MA, Rotimi VO (2011) Emergence of tigecycline and colistin resistance in acinetobacter species isolated from patients in Kuwait hospitals. J Chemother 23:13–16. https://doi.org/10.1179/joc.2011.23.1.13

    Article  CAS  PubMed  Google Scholar 

  25. Abdulzahra AT, Khalil MAF, Elkhatib WF (2018) First report of colistin resistance among carbapenem-resistant Acinetobacter baumannii isolates recovered from hospitalized patients in Egypt. New Microb New Infect 26:53–58. https://doi.org/10.1016/j.nmni.2018.08.007

    Article  Google Scholar 

  26. Liu J-Y, Wang F-D, Ho M-W et al (2016) In vitro activity of aminoglycosides against clinical isolates of Acinetobacter baumannii complex and other nonfermentative Gram-negative bacilli causing healthcare-associated bloodstream infections in Taiwan. J Microbiol Immunol Infect 49:918–923. https://doi.org/10.1016/j.jmii.2015.07.010

    Article  CAS  PubMed  Google Scholar 

  27. Güler G, Eraç B (2016) Investigation of fluoroquinolone resistance mechanisms in clinical Acinetobacter baumannii isolates. Mikrobiyol Bul 50:278–286

    Article  Google Scholar 

  28. Aly MM, Abu Alsoud NM, Elrobh MS et al (2016) High prevalence of the PER-1 gene among carbapenem-resistant Acinetobacter baumannii in Riyadh, Saudi Arabia. Eur J Clin Microbiol Infect Dis 35:1759–1766. https://doi.org/10.1007/s10096-016-2723-8

    Article  CAS  PubMed  Google Scholar 

  29. Alyamani EJ, Khiyami MA, Booq RY et al (2015) Molecular characterization of extended-spectrum beta-lactamases (ESBLs) produced by clinical isolates of Acinetobacter baumannii in Saudi Arabia. Ann Clin Microbiol Antimicrob 14:38. https://doi.org/10.1186/s12941-015-0098-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Evans BA, Hamouda A, Amyes SGB (2013) The rise of carbapenem-resistant Acinetobacter baumannii. Curr Pharm Des 19:223–238

    Article  CAS  Google Scholar 

  31. Alsultan AA, Evans BA, Elsayed EA et al (2013) High frequency of carbapenem-resistant Acinetobacter baumannii in patients with diabetes mellitus in Saudi Arabia. J Med Microbiol 62:885–888. https://doi.org/10.1099/jmm.0.057216-0

    Article  CAS  PubMed  Google Scholar 

  32. Agoba EE, Govinden U, Peer AKC et al (2018) ISAba1 regulated OXA-23 carbapenem resistance in Acinetobacter baumannii strains in Durban, South Africa. Microb Drug Resist 24:1289–1295. https://doi.org/10.1089/mdr.2017.0172

    Article  CAS  PubMed  Google Scholar 

  33. Segal H, Jacobson RK, Garny S et al (2007) Extended −10 promoter in ISAba-1 upstream of blaOXA-23 from Acinetobacter baumannii. Antimicrob Agents Chemother 51:3040–3041. https://doi.org/10.1128/AAC.00594-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Martínez P, Mattar S (2012) Imipenem-resistant Acinetobacter baumannii carrying the ISAba1-blaOXA-23,51 and ISAba1-blaADC-7 genes in Monteria, Colombia. Braz J Microbiol 43:1274–1280. https://doi.org/10.1590/S1517-83822012000400006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. El-Ageery SM, Al-Hazmi SS (2014) Microbiological and molecular detection of VIM-1 metallo beta lactamase-producing Acinetobacter baumannii. Eur Rev Med Pharmacol Sci 18:965–970

    CAS  PubMed  Google Scholar 

  36. Gomaa FAM, Helal ZH, Khan MI (2017) High prevalence of blaNDM-1, blaVIM, qacE, and qacEΔ1 genes and their association with decreased susceptibility to antibiotics and common hospital biocides in clinical isolates of Acinetobacter baumannii. Microorganisms. https://doi.org/10.3390/microorganisms5020018

    Article  PubMed  PubMed Central  Google Scholar 

  37. Pillonetto M, Arend L, Vespero EC et al (2014) First report of NDM-1-producing Acinetobacter baumannii sequence type 25 in Brazil. Antimicrob Agents Chemother 58:7592–7594. https://doi.org/10.1128/AAC.03444-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ramirez MS, Nikolaidis N, Tolmasky ME (2013) Rise and dissemination of aminoglycoside resistance: the aac(6′)-Ib paradigm. Front Microbiol. https://doi.org/10.3389/fmicb.2013.00121

    Article  PubMed  PubMed Central  Google Scholar 

  39. Detection of KPC in Acinetobacter spp. in Puerto Rico | Antimicrobial Agents and Chemotherapy. https://aac.asm.org/content/54/3/1354. Accessed 31 Oct 2019

  40. Comparative genome sequence analysis of multidrug-resistant Acinetobacter baumannii. - PubMed - NCBI. https://www.ncbi.nlm.nih.gov/pubmed/18931120. Accessed 31 Oct 2019

Download references

Acknowledgements

This work was funded by the deanship of scientific research, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia (IRB-PGS-2018-03-178). We would like to thank the technical staff at the Microbiology Lab of King Fahad University Hospital, especially Mr. Untoy Rashan, for his help with isolate collection.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aisha M. AlAmri.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

AlAmri, A.M., AlQurayan, A.M., Sebastian, T. et al. Molecular Surveillance of Multidrug-Resistant Acinetobacter baumannii. Curr Microbiol 77, 335–342 (2020). https://doi.org/10.1007/s00284-019-01836-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-019-01836-z

Navigation