Skip to main content
Log in

Mitochondrial Citrate Transport System in the Fungus Mucor circinelloides: Identification, Phylogenetic Analysis, and Expression Profiling During Growth and Lipid Accumulation

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

The mitochondrial citrate transport system, composed of citrate and malate transporters (MTs), can regulate the citrate efflux from mitochondria to cytosol, and then citrate is cleaved into OAA and acetyl-CoA which can be used for fatty acid (FA) biosynthesis. However, in the fungus Mucor circinelloides the molecular mechanism of citrate efflux from the mitochondria by this system and its role in FA synthesis is unclear. In the present study, we have analyzed the genome of high lipid-producing strain WJ11 and the low lipid-producing strain CBS 277.49 to find the potential genes involving in this system. Five potential genes are present in the genome of WJ11. These genes encode one citrate transport protein (CT), one tricarboxylate carrier (TCT), one MT, and two 2-oxoglutarate:malate antiporters (SoDIT-a and SoDIT-b). However, the genome of CBS 277.49 contains the same set of genes, except for the presence of just one SoDIT. The proteins from WJ11 had similar properties as their counterparts in CBS 277.49. Moreover, phylogenetic analyses revealed the evolutionary relationship of these proteins and illuminated their typical motifs related to potential functions. Additionally, the expression of these genes was analyzed to predict the possible functions in lipid metabolism in M. circinelloides. This is the first study to report the in silico analysis of structures and functions of the mitochondrial citrate transport system in M. circinelloides. This work showed a new strategy for research for the selection of candidate genes for further detailed functional investigation of the mitochondrial citrate transport system in lipid accumulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this article (and its Additional file).

References

  1. Thorpe R, Ratledge C (1972) Fatty acid distribution in triglycerides of yeasts grown on glucose or n-alkanes. J Gen Microbiol 72:151–163

    Article  CAS  Google Scholar 

  2. Chutrakul C, Jeennor S, Panchanawaporn S, Cheawchanlertfa P, Suttiwattanakul S, Veerana M, Laoteng K (2016) Metabolic engineering of long chain-polyunsaturated fatty acid biosynthetic pathway in oleaginous fungus for dihomo-gamma linolenic acid production. J Biotechnol 218:85–93. https://doi.org/10.1016/j.jbiotec.2015.12.003

    Article  CAS  PubMed  Google Scholar 

  3. Zhang Y, Luan X, Zhang H, Garre V, Song Y, Ratledge C (2017) Improved gamma-linolenic acid production in Mucor circinelloides by homologous overexpressing of delta-12 and delta-6 desaturases. Microb Cell Factories 16(1):113. https://doi.org/10.1186/s12934-017-0723-8

    Article  CAS  Google Scholar 

  4. Khan M, Yang J, Hussain S, Zhang H, Garre V, Song Y (2019) Genetic Modification of Mucor circinelloides to construct stearidonic acid producing cell factory. Int J Mol Sci 20(7):1683. https://doi.org/10.3390/ijms20071683

    Article  CAS  PubMed Central  Google Scholar 

  5. Khan MAK, Yang J, Hussain SA, Zhang H, Liang L, Garre V, Song Y (2019) Construction of DGLA producing cell factory by genetic modification of Mucor circinelloides. Microb Cell Factories 18(1):64. https://doi.org/10.1186/s12934-019-1110-4

    Article  Google Scholar 

  6. Ratledge C (2014) The role of malic enzyme as the provider of NADPH in oleaginous microorganisms: a reappraisal and unsolved problems. Biotechnol Lett 36(8):1557–1568. https://doi.org/10.1007/s10529-014-1532-3

    Article  CAS  PubMed  Google Scholar 

  7. Guay C, Madiraju SR, Aumais A, Joly E, Prentki M (2007) A role for ATP-citrate lyase, malic enzyme, and pyruvate/citrate cycling in glucose-induced insulin secretion. J Biol Chem 282(49):35657–35665. https://doi.org/10.1074/jbc.M707294200

    Article  CAS  PubMed  Google Scholar 

  8. Heart E, Cline GW, Collis LP, Pongratz RL, Gray JP, Smith PJ (2009) Role for malic enzyme, pyruvate carboxylation, and mitochondrial malate import in glucose-stimulated insulin secretion. Am J Physiol Endocrinol Metab 296(6):E1354–E1362. https://doi.org/10.1152/ajpendo.90836.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhao L, Tang X, Luan X, Chen H, Chen YQ, Chen W, Song Y, Ratledge C (2015) Role of pentose phosphate pathway in lipid accumulation of oleaginous fungus Mucor circinelloides. RSC Adv 5(118):97658–97664. https://doi.org/10.1039/c5ra20364c

    Article  CAS  Google Scholar 

  10. Zhang H, Zhang L, Chen H, Chen YQ, Chen W, Song Y, Ratledge C (2014) Enhanced lipid accumulation in the yeast Yarrowia lipolytica by over-expression of ATP:citrate lyase from Mus musculus. J Biotechnol 192(Pt A):78–84. https://doi.org/10.1016/j.jbiotec.2014.10.004

    Article  CAS  PubMed  Google Scholar 

  11. Castegna A, Scarcia P, Agrimi G, Palmieri L, Rottensteiner H, Spera I, Germinario L, Palmieri F (2010) Identification and functional characterization of a novel mitochondrial carrier for citrate and oxoglutarate in Saccharomyces cerevisiae. J Biol Chem 285(23):17359–17370. https://doi.org/10.1074/jbc.M109.097188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Dolce V, Cappello AR, Capobianco L (2014) Mitochondrial tricarboxylate and dicarboxylate–tricarboxylate carriers: from animals to plants. IUBMB Life 66(7):462–471. https://doi.org/10.1002/iub.1290

    Article  CAS  PubMed  Google Scholar 

  13. Klingenberg M (1972) Kinetic study of the tricarboxylate carrier in rat liver mitochondria. Eur J Biochem 26(4):587–594

    Article  CAS  Google Scholar 

  14. Spagnoletta A, De Santis A, Tampieri E, Baraldi E, Bachi A, Genchi G (2006) Identification and kinetic characterization of HtDTC, the mitochondrial dicarboxylate–tricarboxylate carrier of Jerusalem artichoke tubers. J Bioenerg Biomembr 38(1):57–65. https://doi.org/10.1007/s10863-006-9006-5

    Article  CAS  PubMed  Google Scholar 

  15. Shug AL, Shrago E (1973) Inhibition of phosphoenolpyruvate transport via the tricarboxylate and adenine nucleotide carrier systems of rat liver mitochondria. Biochem Biophys Res Commun 53(2):659–665

    Article  CAS  Google Scholar 

  16. De Palma A, Prezioso G, Scalera V (2005) Kinetic evidence for the uniport mechanism hypothesis in the mitochondrial tricarboxylate transport system. J Bioenerg Biomembr 37(5):279–287. https://doi.org/10.1007/s10863-005-8639-0

    Article  CAS  PubMed  Google Scholar 

  17. Bisaccia F, De Palma A, Palmieri F (1990) Purification and reconstitution of the tricarboxylate carrier from rat liver mitochondria. Ital J Biochem 39(3):167A–169A

    CAS  PubMed  Google Scholar 

  18. Zara V, Palmieri L, Franco MR, Perrone M, Gnoni GV, Palmieri F (1998) Kinetics of the reconstituted tricarboxylate carrier from eel liver mitochondria. J Bioenerg Biomembr 30(6):555–563

    Article  CAS  Google Scholar 

  19. Gnoni GV, Giudetti AM, Mercuri E, Damiano F, Stanca E, Priore P, Siculella L (2010) Reduced activity and expression of mitochondrial citrate carrier in streptozotocin-induced diabetic rats. Endocrinology 151(4):1551–1559. https://doi.org/10.1210/en.2009-1352

    Article  CAS  PubMed  Google Scholar 

  20. Mancusso R, Gregorio GG, Liu Q, Wang DN (2012) Structure and mechanism of a bacterial sodium-dependent dicarboxylate transporter. Nature 491(7425):622–626. https://doi.org/10.1038/nature11542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Halperin ML, Schiller CM, Fritz IB (1971) The inhibition by methylmalonic acid of malate transport by the dicarboxylate carrier in rat liver mitochondria. A possible explantation for hypoglycemia in methylmalonic aciduria. J Clin Investig 50(11):2276–2282. https://doi.org/10.1172/JCI106725

    Article  CAS  Google Scholar 

  22. Johnson RN, Chappell JB (1973) The transport of inorganic phosphate by the mitochondrial dicarboxylate carrier. Biochem J 134(3):769–774

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Nozawa A, Fujimoto R, Matsuoka H, Tsuboi T, Tozawa Y (2011) Cell-free synthesis, reconstitution, and characterization of a mitochondrial dicarboxylate–tricarboxylate carrier of Plasmodium falciparum. Biochem Biophys Res Commun 414(3):612–617. https://doi.org/10.1016/j.bbrc.2011.09.130

    Article  CAS  PubMed  Google Scholar 

  24. Huypens P, Pillai R, Sheinin T, Schaefer S, Huang M, Odegaard ML, Ronnebaum SM, Wettig SD, Joseph JW (2011) The dicarboxylate carrier plays a role in mitochondrial malate transport and in the regulation of glucose-stimulated insulin secretion from rat pancreatic beta cells. Diabetologia 54(1):135–145. https://doi.org/10.1007/s00125-010-1923-5

    Article  CAS  PubMed  Google Scholar 

  25. Zhao L, Canovas-Marquez JT, Tang X, Chen H, Chen YQ, Chen W, Garre V, Song Y, Ratledge C (2016) Role of malate transporter in lipid accumulation of oleaginous fungus Mucor circinelloides. Appl Microbiol Biotechnol 100(3):1297–1305. https://doi.org/10.1007/s00253-015-7079-y

    Article  CAS  PubMed  Google Scholar 

  26. Palmieri EM, Spera I, Menga A, Infantino V, Porcelli V, Iacobazzi V, Pierri CL, Hooper DC, Palmieri F (1847) Castegna A (2015) Acetylation of human mitochondrial citrate carrier modulates mitochondrial citrate/malate exchange activity to sustain NADPH production during macrophage activation. Biochim Biophys Acta 8:729–738. https://doi.org/10.1016/j.bbabio.2015.04.009

    Article  CAS  Google Scholar 

  27. Camarasa C, Bidard F, Bony M, Barre P, Dequin S (2001) Characterization of Schizosaccharomyces pombe malate permease by expression in Saccharomyces cerevisiae. Appl Environ Microbiol 67(9):4144–4151. https://doi.org/10.1128/aem.67.9.4144-4151.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Thammarongtham C, Nookaew I, Vorapreeda T, Srisuk T, Land ML, Jeennor S, Laoteng K (2017) Genome characterization of oleaginous Aspergillus oryzae BCC7051: a potential fungal-based platform for lipid production. Curr Microbiol. https://doi.org/10.1007/s00284-017-1350-7

    Article  PubMed  Google Scholar 

  29. Vongsangnak W, Ruenwai R, Tang X, Hu X, Zhang H, Shen B, Song Y, Laoteng K (2013) Genome-scale analysis of the metabolic networks of oleaginous Zygomycete fungi. Gene 521(1):180–190. https://doi.org/10.1016/j.gene.2013.03.012

    Article  CAS  PubMed  Google Scholar 

  30. Ratledge C, Wynn JP (2002) The biochemistry and molecular biology of lipid accumulation in oleaginous microorganisms. Adv Appl Microbiol 51:1–51

    Article  CAS  Google Scholar 

  31. Tang X, Zhao L, Chen H, Chen YQ, Chen W, Song Y, Ratledge C (2015) Complete genome sequence of a high lipid-producing strain of Mucor circinelloides WJ11 and comparative genome analysis with a low lipid-producing strain CBS 277.49. PLoS ONE 10(9):e0137543. https://doi.org/10.1371/journal.pone.0137543

    Article  Google Scholar 

  32. Yang J, Li S, Kabir Khan MA, Garre V, Vongsangnak W, Song Y (2019) Increased lipid accumulation in Mucor circinelloides by overexpression of mitochondrial citrate transporter genes. Ind Eng Chem Res 58(6):2125–2134. https://doi.org/10.1021/acs.iecr.8b05564

    Article  CAS  Google Scholar 

  33. Saier MH Jr, Reddy VS, Tsu BV, Ahmed MS, Li C, Moreno-Hagelsieb G (2016) The Transporter Classification Database (TCDB): recent advances. Nucleic Acids Res 44(D1):D372–D379. https://doi.org/10.1093/nar/gkv1103

    Article  CAS  PubMed  Google Scholar 

  34. Kendrick A, Ratledge C (1992) Desaturation of polyunsaturated fatty acids in Mucor circinelloides and the involvement of a novel membrane-bound malic enzyme. Eur J Biochem 209(2):667–673

    Article  CAS  Google Scholar 

  35. Zan X, Tang X, Chu L, Zhao L, Chen H, Chen YQ, Chen W, Song Y (2016) Lipase genes in Mucor circinelloides: identification, sub-cellular location, phylogenetic analysis and expression profiling during growth and lipid accumulation. J Ind Microbiol Biotechnol 43(10):1467–1480. https://doi.org/10.1007/s10295-016-1820-0

    Article  CAS  PubMed  Google Scholar 

  36. Palmieri F (2013) The mitochondrial transporter family SLC25: identification, properties and physiopathology. Mol Asp Med 34(2–3):465–484. https://doi.org/10.1016/j.mam.2012.05.005

    Article  CAS  Google Scholar 

  37. Xu Y, Kakhniashvili DA, Gremse DA, Wood DO, Mayor JA, Walters DE, Kaplan RS (2000) The yeast mitochondrial citrate transport protein. Probing the roles of cysteines, Arg(181), and Arg(189) in transporter function. J Biol Chem 275(10):7117–7124

    Article  CAS  Google Scholar 

  38. Ma C, Remani S, Sun J, Kotaria R, Mayor JA, Walters DE, Kaplan RS (2007) Identification of the substrate binding sites within the yeast mitochondrial citrate transport protein. J Biol Chem 282(23):17210–17220. https://doi.org/10.1074/jbc.M611268200

    Article  CAS  PubMed  Google Scholar 

  39. Majd H, King MS, Smith AC (1859) Kunji ERS (2018) Pathogenic mutations of the human mitochondrial citrate carrier SLC25A1 lead to impaired citrate export required for lipid, dolichol, ubiquinone and sterol synthesis. Biochim Biophys Acta 1:1–7. https://doi.org/10.1016/j.bbabio.2017.10.002

    Article  CAS  Google Scholar 

  40. Azzi A, Glerum M, Koller R, Mertens W, Spycher S (1993) The mitochondrial tricarboxylate carrier. J Bioenerg Biomembr 25(5):515–524

    Article  CAS  Google Scholar 

  41. Capobianco L, Ferramosca A, Zara V (2002) The mitochondrial tricarboxylate carrier of silver eel: dimeric structure and cytosolic exposure of both N- and C-termini. J Protein Chem 21(8):515–521

    Article  CAS  Google Scholar 

  42. Siculella L, Sabetta S, Damiano F, Giudetti AM, Gnoni GV (2004) Different dietary fatty acids have dissimilar effects on activity and gene expression of mitochondrial tricarboxylate carrier in rat liver. FEBS Lett 578(3):280–284. https://doi.org/10.1016/j.febslet.2004.11.014

    Article  CAS  PubMed  Google Scholar 

  43. Miyake S, Yamashita T, Taniguchi M, Tamatani M, Sato K, Tohyama M (2002) Identification and characterization of a novel mitochondrial tricarboxylate carrier. Biochem Biophys Res Commun 295(2):463–468

    Article  CAS  Google Scholar 

  44. Marchler-Bauer A, Bo Y, Han L, He J, Lanczycki CJ, Lu S, Chitsaz F, Derbyshire MK, Geer RC, Gonzales NR, Gwadz M, Hurwitz DI, Lu F, Marchler GH, Song JS, Thanki N, Wang Z, Yamashita RA, Zhang D, Zheng C, Geer LY, Bryant SH (2017) CDD/SPARCLE: functional classification of proteins via subfamily domain architectures. Nucleic Acids Res 45(D1):D200–D203. https://doi.org/10.1093/nar/gkw1129

    Article  CAS  PubMed  Google Scholar 

  45. Bergeron MJ, Clemencon B, Hediger MA, Markovich D (2013) SLC13 family of Na(+)-coupled di- and tri-carboxylate/sulfate transporters. Mol Asp Med 34(2–3):299–312. https://doi.org/10.1016/j.mam.2012.12.001

    Article  CAS  Google Scholar 

  46. Pajor AM (1999) Sodium-coupled transporters for Krebs cycle intermediates. Annu Rev Physiol 61:663–682. https://doi.org/10.1146/annurev.physiol.61.1.663

    Article  CAS  PubMed  Google Scholar 

  47. Liu R, Li B, Qin G, Zhang Z, Tian S (2017) Identification and functional characterization of a tonoplast dicarboxylate transporter in tomato (Solanum lycopersicum). Front Plant Sci 8:186. https://doi.org/10.3389/fpls.2017.00186

    Article  PubMed  PubMed Central  Google Scholar 

  48. Medeiros DB, Barros KA, Barros JAS, Omena-Garcia RP, Arrivault S, Sanglard L, Detmann KC, Silva WB, Daloso DM, DaMatta FM, Nunes-Nesi A, Fernie AR, Araujo WL (2017) Impaired malate and fumarate accumulation due to the mutation of the tonoplast dicarboxylate transporter has little effects on stomatal behavior. Plant Physiol 175(3):1068–1081. https://doi.org/10.1104/pp.17.00971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Birkenfeld AL, Lee HY, Guebre-Egziabher F, Alves TC, Jurczak MJ, Jornayvaz FR, Zhang D, Hsiao JJ, Martin-Montalvo A, Fischer-Rosinsky A, Spranger J, Pfeiffer AF, Jordan J, Fromm MF, Konig J, Lieske S, Carmean CM, Frederick DW, Weismann D, Knauf F, Irusta PM, De Cabo R, Helfand SL, Samuel VT, Shulman GI (2011) Deletion of the mammalian INDY homolog mimics aspects of dietary restriction and protects against adiposity and insulin resistance in mice. Cell Metab 14(2):184–195. https://doi.org/10.1016/j.cmet.2011.06.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Tang X, Chen H, Chen YQ, Chen W, Garre V, Song Y, Ratledge C (2015) Comparison of biochemical activities between high and low lipid-producing strains of Mucor circinelloides: an explanation for the high oleaginicity of strain WJ11. PLoS ONE 10(6):e0128396. https://doi.org/10.1371/journal.pone.0128396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Iacobazzi V, Infantino V (2014) Citrate—new functions for an old metabolite. Biol Chem 395(4):387–399. https://doi.org/10.1515/hsz-2013-0271

    Article  CAS  PubMed  Google Scholar 

  52. Kirimura K, Kobayashi K, Ueda Y, Hattori T (2016) Phenotypes of gene disruptants in relation to a putative mitochondrial malate–citrate shuttle protein in citric acid-producing Aspergillus niger. Biosci Biotechnol Biochem 80(9):1737–1746. https://doi.org/10.1080/09168451.2016.1164583

    Article  CAS  PubMed  Google Scholar 

  53. Bellou S, Triantaphyllidou IE, Mizerakis P, Aggelis G (2016) High lipid accumulation in Yarrowia lipolytica cultivated under double limitation of nitrogen and magnesium. J Biotechnol 234:116–126. https://doi.org/10.1016/j.jbiotec.2016.08.001

    Article  CAS  PubMed  Google Scholar 

  54. Broach JR (2012) Nutritional control of growth and development in yeast. Genetics 192(1):73–105. https://doi.org/10.1534/genetics.111.135731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kurihara Y, Kanki T, Aoki Y, Hirota Y, Saigusa T, Uchiumi T, Kang D (2012) Mitophagy plays an essential role in reducing mitochondrial production of reactive oxygen species and mutation of mitochondrial DNA by maintaining mitochondrial quantity and quality in yeast. J Biol Chem 287(5):3265–3272. https://doi.org/10.1074/jbc.M111.280156

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Professor Wanwipa Vongsangnak in Computational Biomodelling Laboratory for Agricultural Science and Technology (CBLAST), Faculty of Science, Kasetsart University, Thailand, for computational facilities and Yao Zhang for data analysis work supported by the Key Research and Development Project of Shandong Province (2018GSF121013).

Funding

This work was supported by National Natural Science Foundation of China (Grant No. 31670064), TaiShan Industrial Experts Programme (tscy 20160101), the Key Research and Development Project of Shandong Province (2018GNC110039), Starting Grant from Shandong University of Technology and the Plan to Introduce High-Quality Foreign Experts in Zibo City.

Author information

Authors and Affiliations

Authors

Contributions

Junhuan Yang and Md. Ahsanul Kabir Khan performed the experimental design, computational analysis, fermentation testing, manuscript writing, and figures and tables arrangement. Huaiyuan Zhang and Yao Zhang were involved in the experimental design. Victoriano Garre carried out results interpretation and reviewed of final draft. Yuanda Song proposed the project and was involved in data analysis, result interpretation, manuscript writing, and review of the final draft.

Corresponding authors

Correspondence to Victoriano Garre or Yuanda Song.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethics Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

284_2019_1822_MOESM1_ESM.docx

Supplementary file1 (DOCX 137 kb) S1. List of 51 candidates of mitochondrial transporter genes with predicted functions from TCDB. S2. Cell growth and lipid accumulation in M. circinelloides WJ11 and CBS 277.49. S3. Primers used in this study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, J., Khan, M.A.K., Zhang, H. et al. Mitochondrial Citrate Transport System in the Fungus Mucor circinelloides: Identification, Phylogenetic Analysis, and Expression Profiling During Growth and Lipid Accumulation. Curr Microbiol 77, 220–231 (2020). https://doi.org/10.1007/s00284-019-01822-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-019-01822-5

Navigation