Skip to main content
Log in

Anti-biofilm Effect of β-Lapachone and Lapachol Oxime Against Isolates of Staphylococcus aureus

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Antimicrobial resistance in bacteria, such as Staphylococcus aureus, has been the subject of many assistance studies of alternatives for the treatment of infections. These studies aim to solve this problem for bacteria, such as biofilm formation. Aiming to control the emergence of the problem or enhance antibiotic activity, the data sources are inserted into new therapeutic alternatives for the treatment of infections. β-Lapachone and Lapachol Oxime are semi-synthetic derivatives of Lapachol with antimicrobial potential. Clinical isolates from human blood cultures were used in this study. Scanning electron microscopy (SEM) was performed following the glutaraldehyde fixation protocol. The presence of β-Lapachone and Lapachol Oxima interfered in the biofilm formation state. In the MEV, the effect was observed in the reduction of the population of biofilm-forming cells. Therefore, it was possible to conclude the promising potential of the anti-biofilm of substances, justifying the nature of the natural products as agents of inspiration for the detection of new compounds with the biological function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Archer NK et al (2011) Staphylococcus aureus biofilms. Virulence 2(5):445–459

    Article  Google Scholar 

  2. Kong KF et al (2006) Staphylococcus quorum sensing in biofilm formation and infection. Int J Med Microbiol 296:133–139

    Article  CAS  Google Scholar 

  3. López D, Vlamakis H, Kolter R (2010) Biofilms. Cold Spring Harb Perspect Biol 2(7):1–11

    Article  Google Scholar 

  4. Ribeiro SM et al (2016) New frontiers for anti-biofilm drug development. Pharmacol Ther 160:133–144

    Article  CAS  Google Scholar 

  5. Paharik AE, Horswill AR (2016) The staphylococcal biofilm: adhesins, regulation, and host response. Microbiol Spectr 4:529–566. https://doi.org/10.1128/microbiolspec.VMBF-0022-2015

    Article  CAS  Google Scholar 

  6. Cragg GM, Newman DJ (2013) Natural products: a continuing source of novel drug leads. Biochim Biophys Acta 1830:3670–3695

    Article  CAS  Google Scholar 

  7. Cos P et al (2006) Anti-infective potential of natural products: how to develop a stronger in vitro ‘proof-of-concept’. J Ethnopharmacol 106:290–302

    Article  CAS  Google Scholar 

  8. Taylor PW (2013) Alternative natural sources for a new generation of antibacterial. Int J Antibact Agents 42:195–201

    Article  CAS  Google Scholar 

  9. Araújo EL et al (2002) Lapachol: segurança e eficácia na terapêutica. Rev Bras Farmacogn. 12:57–59

    Article  Google Scholar 

  10. Fonseca SGC, Braga RMC, Santana DP (2003) Lapachol—química, farmacologia e métodos de dosagem. Rev Bras Farm 84(1):9–16

    CAS  Google Scholar 

  11. Merino N et al (2009) Protein a-mediated multicellular behavior in Staphylococcus aureus. J Bacteriol 191(23):832–843

    Article  CAS  Google Scholar 

  12. CLSI (2014) Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; approved standard-ninth edition. CLSI document M07-A9. Clinical and Laboratory Standards Institute, Wayne

    Google Scholar 

  13. Nostro A et al (2007) Effects of oregano, carvacrol and thymol on Staphylococcus aureus and Staphylococcus epidermidis biofilms. J Med Microbiol 56:519–523

    Article  CAS  Google Scholar 

  14. Freitas VR, Sand STVD, Simonetti AB (2010) Formação in vitro de biofilme por Pseudomonas aeruginosa e Sthaphylococcus aureus na superficie de canetas odontológicas de alta rotação. Rev. Odontol UNESP 39(4):193–200

    Google Scholar 

  15. Araújo CRM et al (2014) Síntese e determinação in vitro do FPS-UVB de oximas derivadas do lapachol. Rev Virtual de Química 6:1702–1712. https://doi.org/10.5935/1984-6835.20140110

    Article  Google Scholar 

  16. Różalski MI et al (2013) Antimicrobial/anti-bioflm activity of expired blood platelets and their released products. Postepy Hig Med Dosw (online) 67:321–325

    Article  Google Scholar 

  17. Otto M (2008) Staphylococcal biofilms. Curr Top Microbiol Immunol 322:207–228

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Tretin DS et al (2011) Potential of medicinal plants from the Brazilian semi-arid region (Caatinga) against Staphylococcus epidermidis planktonic and biofilm lifestyles. J Ethnopharmacol 137:327–335

    Article  Google Scholar 

  19. Arciola CR et al (2015) Polysaccharide intercellular adhesin in biofilm: structural and regulatory aspects. Front Cell Infect Microbiol 5:1–7

    Article  Google Scholar 

  20. Büttner H, Mack D, Rohde H (2015) Structural basis of Staphylococcus epidermidis biofilm formation: mechanisms and molecular interactions. Front Cell Infect Microbiol 5(14):1–15. https://doi.org/10.3389/fcimb.2015.00014

    Article  CAS  Google Scholar 

  21. Gotz F (2002) Staphylococcus and biofilms. Mol Microbiol 43(6):1367–1378

    Article  CAS  Google Scholar 

  22. Mack D et al (2004) Mechanisms of biofilm formation in Staphylococcus epidermidis and Staphylococcus aureus: functional molecules, regulatory circuits, and adaptive responses. Int J Med Microbiol 294:203–212

    Article  CAS  Google Scholar 

  23. Hertiani T et al (2010) From anti-fouling to biofilm inhibition: new cytotoxic secondary metabolites from two Indonesian Agelas sponges. Bioorg Med Chem 18:1297–131

    Article  Google Scholar 

Download references

Acknowledgements

To CAPES (Higher Education Personnel Improvement Coordination) and FACEPE (Foundation for Science and Technology of Pernambuco) by granting the scholarship and research, aiming to stimulate the formation of high-level resources and standards of excellence indispensable to the development of our country.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antônio Wilton Cavalcante Fernandes.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fernandes, A.W.C., dos Anjos Santos, V.L., Araújo, C.R.M. et al. Anti-biofilm Effect of β-Lapachone and Lapachol Oxime Against Isolates of Staphylococcus aureus. Curr Microbiol 77, 204–209 (2020). https://doi.org/10.1007/s00284-019-01818-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-019-01818-1

Navigation