Skip to main content
Log in

Degradation Mechanism of 4-Chlorobiphenyl by Consortium of Pseudomonas sp. Strain CB-3 and Comamonas sp. Strain CD-2

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Polychlorinated biphenyls (PCBs) are types of lasting environmental pollutants which are widely used in various industries. 4-chlorobiphenyl (4CBP) is a PCB which is harmful to the environment as well as humans. Two strains, CB-3 and CD-2, were isolated from the polluted soil of a chemical factory and could completely degrade 50 mg/L 4CBP within 12 h by co-culture. The consortium comprising strains CB-3 and CD-2 was effective in the degradation of 4CBP. 4CBP was degraded initially by strain CB-3 to accumulate 4-chlorobenzoate (4CBA) and further oxidised by strain CD-2. Based on 16S rRNA gene sequence analysis and phenotypic typing, strain CB-3 and strain CD-2 were identified as Pseudomonas sp. and Comamonas sp., respectively. The substrate spectra experiment showed that strain CB-3 could degrade PCBs with no more than three chlorine atoms. A gene cluster of biphenyl metabolism was found in the genome of strain CB-3. Besides, a dechlorination gene cluster and a gene cluster of protocatechuate (PCA) metabolic were found in the genome of strain CD-2. These gene clusters are supposed to be involved in 4CBP degradation. The ability of strains CB-3 and CD-2 to degrade 4CBP in soil was assessed by soil experiment, and 4CBP at the initial concentration of 10 mg/kg was 80.5% removed within 15 days.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Adebusoye SA, Picardal FW, Ilori MO, Amund OO, Fuqua C (2008) Characterization of multiple novel aerobic polychlorinated biphenyl (PCB)-utilizing bacterial strains indigenous to contaminated tropical African soils. Biodegradation 19(1):145–159. https://doi.org/10.1007/s10532-007-9122-x

    Article  CAS  PubMed  Google Scholar 

  2. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, Formsma K, Gerdes S, Glass EM, Kubal M, Meyer F, Olsen GJ, Olson R, Osterman AL, Overbeek RA, McNeil LK, Paarmann D, Paczian T, Parrello B, Pusch GD, Reich C, Stevens R, Vassieva O, Vonstein V, Wilke A, Zagnitko O (2008) The RAST Server: rapid annotations using subsystems technology. BMC Genomics 9:75. https://doi.org/10.1186/1471-2164-9-75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Beyer A, Biziuk M (2009) Environmental fate and global distribution of polychlorinated biphenyls. Rev Environ Contam Toxicol 201:137–158. https://doi.org/10.1007/978-1-4419-0032-6_5

    Article  CAS  PubMed  Google Scholar 

  4. Blasco R, Mallavarapu M, Wittich RM, Timmis KN, Pieper DH (1997) Evidence that formation of protoanemonin from metabolites of 4-chlorobiphenyl degradation negatively affects the survival of 4-chlorobiphenyl-cometabolizing microorganisms. Appl Environ Microbiol 63(2):427–434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Blasco R, Wittich RM, Mallavarapu M, Timmis KN, Pieper DH (1995) From xenobiotic to antibiotic, formation of protoanemonin from 4-chlorocatechol by enzymes of the 3-oxoadipate pathway. J Biol Chem 270(49):29229–29235. https://doi.org/10.1074/jbc.270.49.29229

    Article  CAS  PubMed  Google Scholar 

  6. Camara B, Herrera C, Gonzalez M, Couve E, Hofer B, Seeger M (2004) From PCBs to highly toxic metabolites by the biphenyl pathway. Environ Microbiol 6(8):842–850. https://doi.org/10.1111/j.1462-2920.2004.00630.x

    Article  CAS  PubMed  Google Scholar 

  7. Chae JC, Kim E, Park SH, Kim CK (2000) Catabolic degradation of 4-chlorobiphenyl by Pseudomonas sp. DJ-12 via consecutive reaction of meta-cleavage and hydrolytic dechlorination. Biotechnol Bioproc E 5(6):449–455

    Article  CAS  Google Scholar 

  8. Chae JC, Kim Y, Kim YC, Zylstra GJ, Kim CK (2000) Genetic structure and functional implication of the fcb gene cluster for hydrolytic dechlorination of 4-chlorobenzoate from Pseudomonas sp. DJ-12. Gene 258(1–2):109–116. https://doi.org/10.1016/s0378-1119(00)00419-4

    Article  CAS  PubMed  Google Scholar 

  9. Egorova DO, Demakov VA, Plotnikova EG (2013) Bioaugmentation of a polychlorobiphenyl contaminated soil with two aerobic bacterial strains. J Hazard Mater 261:378–386. https://doi.org/10.1016/j.jhazmat.2013.07.067

    Article  CAS  PubMed  Google Scholar 

  10. Erickson MD, Kaley RG 2nd (2011) Applications of polychlorinated biphenyls. Environ Sci Pollut Res Int 18(2):135–151. https://doi.org/10.1007/s11356-010-0392-1

    Article  CAS  PubMed  Google Scholar 

  11. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39(4):783–791. https://doi.org/10.1111/j.1558-5646.1985.tb00420.x

    Article  PubMed  Google Scholar 

  12. Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17(6):368–376. https://doi.org/10.1007/bf01734359

    Article  CAS  PubMed  Google Scholar 

  13. Frank JA, Reich CI, Sharma S, Weisbaum JS, Wilson BA, Olsen GJ (2008) Critical evaluation of two primers commonly used for amplification of bacterial 16S rRNA genes. Appl Environ Microbiol 74(8):2461–2470. https://doi.org/10.1128/AEM.02272-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Goel A, Upadhyay K, Chakraborty M (2016) Investigation of levels in ambient air near sources of Polychlorinated Biphenyls (PCBs) in Kanpur, India, and risk assessment due to inhalation. Environ Monit Assess 188(5):278. https://doi.org/10.1007/S10661-016-5280-9

    Article  PubMed  Google Scholar 

  15. Haggblom MM (1992) Microbial breakdown of halogenated aromatic pesticides and related compounds. FEMS Microbiol Lett 103(1):29–72

    Article  CAS  Google Scholar 

  16. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. In: Nucleic acids symposium series, 1999. vol 41. [London]: Information Retrieval Ltd., c1979-c2000., pp 95–98

  17. Hofer B, Backhaus S, Timmis KN (1994) The biphenyl/polychlorinated biphenyl-degradation locus (bph) of Pseudomonas sp. LB400 encodes four additional metabolic enzymes. Gene 144(1):9–16. https://doi.org/10.1016/0378-1119(94)90196-1

    Article  CAS  PubMed  Google Scholar 

  18. Ilori MO, Robinson GK, Adebusoye SA (2008) Degradation and mineralization of 2-chloro-, 3-chloro-and 4-chlorobiphenylby a newly characterized natural bacterial strain isolated froman electrical transformer fluid-contaminated soil. J Integr Environ Sci 20(10):1250–1257

    Article  CAS  Google Scholar 

  19. Kang CH, Lee SM, Lee K, Lee DH, Kim CK (2005) Structure analysis of pmcABCDEFT gene cluster for degradation of protocatechuate from Comamonas sp. strain DJ-12. Korean J Microbiol 41(3):195–200

    Google Scholar 

  20. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M, Na H, Park SC, Jeon YS, Lee JH, Yi H, Won S, Chun J (2012) Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62(Pt 3):716–721. https://doi.org/10.1099/ijs.0.038075-0

    Article  CAS  PubMed  Google Scholar 

  21. Kim S, Picardal FW (2000) A novel bacterium that utilizes monochlorobiphenyls and 4-chlorobenzoate as growth substrates. FEMS Microbiol Lett 185(2):225–229

    Article  CAS  PubMed  Google Scholar 

  22. Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ, Disz T, Edwards RA, Gerdes S, Parrello B, Shukla M, Vonstein V, Wattam AR, Xia F, Stevens R (2014) The SEED and the rapid annotation of microbial genomes using subsystems technology (RAST). Nucleic Acids Res 42:206–214. https://doi.org/10.1093/nar/gkt1226

    Article  CAS  Google Scholar 

  23. Pham TTM, Sondossi M, Sylvestre M (2015) Metabolism of doubly para-substituted hydroxychlorobiphenyls by bacterial biphenyl dioxygenases. Appl Environ Microbiol 81(14):4860–4872. https://doi.org/10.1128/Aem.00786-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Pitcher DG, Saunders NA, Owen RJ (1989) Rapid extraction of bacterial genomic DNA with guanidium thiocyanate. Lett Appl Microbiol 8(4):151–156. https://doi.org/10.1111/j.1472-765X.1989.tb00262.x

    Article  CAS  Google Scholar 

  25. Rodrigues JLM, Kachel CA, Aiello MR, Quensen JF, Maltseva OV, Tsoi TV, Tiedje JM (2006) Degradation of Aroclor 1242 dechlorination products in sediments by Burkholderia xenovorans LB400(ohb) and Rhodococcus sp. strain RHA1(fcb). Appl Environ Microbiol 72(4):2476–2482. https://doi.org/10.1128/Aem.72.4.2476-2482.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Saagua MC, Vieira G, Paveia H, Anselmo A (1998) Isolation and preliminary characterization of Bacillus sp MCS, a gram-positive 4-chlorobiphenyl degrading bacterium. Int Biodeter Biodegr 42(1):39–43. https://doi.org/10.1016/s0964-8305(98)00044-4

    Article  CAS  Google Scholar 

  27. Saavedra JM, Acevedo F, Gonzalez M, Seeger M (2010) Mineralization of PCBs by the genetically modified strain Cupriavidus necator JMS34 and its application for bioremediation of PCBs in soil. Appl Microbiol Biotechnol 87(4):1543–1554. https://doi.org/10.1007/s00253-010-2575-6

    Article  CAS  PubMed  Google Scholar 

  28. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4(4):406–425. https://doi.org/10.1093/oxfordjournals.molbev.a040454

    Article  CAS  PubMed  Google Scholar 

  29. Sharma JK, Gautam RK, Nanekar SV, Weber R, Singh BK, Singh SK, Juwarkar AA (2018) Advances and perspective in bioremediation of polychlorinated biphenyl-contaminated soils. Environ Sci Pollut Res 25(17):16355–16375. https://doi.org/10.1007/s11356-017-8995-4

    Article  CAS  Google Scholar 

  30. Singer AC, Gilbert ES, Luepromchai E, Crowley DE (2000) Bioremediation of polychlorinated biphenyl-contaminated soil using carvone and surfactant-grown bacteria. Appl Microbiol Biotechnol 54(6):838–843. https://doi.org/10.1007/s002530000472

    Article  CAS  PubMed  Google Scholar 

  31. Skiba A, Hecht V, Pieper DH (2002) Formation of protoanemonin from 2-chloro-cis, cis-muconate by the combined action of muconate cycloisomerase and muconolactone isomerase. J Bacteriol 184(19):5402–5409. https://doi.org/10.1128/Jb.184.19.5402-5409.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28(10):2731–2739. https://doi.org/10.1093/molbev/msr121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Tandlich R, Vrana B, Payne S, Dercova K, Balaz S (2011) Biodegradation mechanism of biphenyl by a strain of Pseudomonas stutzeri. J Environ Sci Health, Part A 46(4):337–344. https://doi.org/10.1080/10934529.2011.542383

    Article  CAS  Google Scholar 

  34. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25(24):4876–4882. https://doi.org/10.1093/nar/25.24.4876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Vasilyeva GK, Strijakova ER (2007) Bioremediation of soils and sediments contaminated by polychlorinated biphenyls. Microbiology 76(6):639–653. https://doi.org/10.1134/S002626170706001x

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Fund of China (41671317) and Jiangsu Agriculture Science and Technology Innovation Fund (CX(18)1005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xing Huang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Research Involving Human Participants and/or Animals

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2556 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xing, Z., Hu, T., Xiang, Y. et al. Degradation Mechanism of 4-Chlorobiphenyl by Consortium of Pseudomonas sp. Strain CB-3 and Comamonas sp. Strain CD-2. Curr Microbiol 77, 15–23 (2020). https://doi.org/10.1007/s00284-019-01791-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-019-01791-9

Navigation