Skip to main content
Log in

Using the IPTG-Inducible Pgrac212 Promoter for Overexpression of Human Rhinovirus 3C Protease Fusions in the Cytoplasm of Bacillus subtilis Cells

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Expression and secretion of recombinant proteins in the endotoxin-free bacterium, Bacillus subtilis, has been thoroughly studied, but overexpression in the cytoplasm has been limited to only a few proteins. Here, we used the robust IPTG-inducible promoter, Pgrac212, to overexpress human rhinovirus 3C protease (HRV3C) in the cytoplasm of B. subtilis cells. A novel solubility tag, the N-terminal domain of the lysS gene of B. subtilis coding for a lysyl-tRNA synthetase was placed at the N terminus with a cleavage site for the endoprotease HRV3C, followed by His-HRV3C or His-GST-HRV3C. The recombinant protease was purified by using a Ni–NTA column. In this study, the His-HRV3C and His-GST-HRV3C proteases were overexpressed in the cytoplasm of B. subtilis at 11% and 16% of the total cellular proteins, respectively. The specific protease activities were 8065 U/mg for His-HRV3C and 3623 U/mg for His-GST-HRV3C. The purified enzymes were used to cleave two different substrates followed by purification of the two different protein targets, the green fluorescent protein and the beta-galactosidase. In conclusion, the combination of an inducible promoter Pgrac212 and a solubility tag allowed the overexpression of the HRV3C protease in the cytoplasm of B. subtilis. The resulting fusion protein was purified using a nickel column and was active in cleaving target proteins to remove the fusion tags. This study offers an effective method for producing recombinant proteins in the cytoplasm of endotoxin-free bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Westers L, Westers H, Quax WJ (2004) Bacillus subtilis as cell factory for pharmaceutical proteins: a biotechnological approach to optimize the host organism. Biochim Biophys Acta 1694:299–310. https://doi.org/10.1016/j.bbamcr.2004.02.011

    Article  CAS  PubMed  Google Scholar 

  2. Zweers JC, Barák I, Becher D et al (2008) Towards the development of Bacillus subtilis as a cell factory for membrane proteins and protein complexes. Microb Cell Fact 7:10. https://doi.org/10.1186/1475-2859-7-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Harwood CR, Cranenburgh R (2008) Bacillus protein secretion: an unfolding story. Trends Microbiol 16:73–79. https://doi.org/10.1016/j.tim.2007.12.001

    Article  CAS  PubMed  Google Scholar 

  4. Pohl S, Harwood CR (2010) Heterologous protein secretion by Bacillus species from the cradle to the grave. Adv Appl Microbiol 73:1–25. https://doi.org/10.1016/S0065-2164(10)73001-X

    Article  CAS  PubMed  Google Scholar 

  5. Wong SL (1995) Advances in the use of Bacillus subtilis for the expression and secretion of heterologous proteins. Curr Opin Biotechnol 6:517–522

    Article  CAS  Google Scholar 

  6. Shields DC, Sharp PM (1987) Synonymous codon usage in Bacillus subtilis reflects both translational selection and mutational biases. Nucleic Acids Res 15:8023–8040

    Article  CAS  Google Scholar 

  7. Kang Z, Yang S, Du G, Chen J (2014) Molecular engineering of secretory machinery components for high-level secretion of proteins in Bacillus species. J Ind Microbiol Biotechnol 41:1599–1607. https://doi.org/10.1007/s10295-014-1506-4

    Article  CAS  PubMed  Google Scholar 

  8. Schallmey M, Singh A, Ward OP (2004) Developments in the use of Bacillus species for industrial production. Can J Microbiol 50:1–17. https://doi.org/10.1139/w03-076

    Article  CAS  PubMed  Google Scholar 

  9. Schumann W (2007) Production of recombinant proteins in Bacillus subtilis. Adv Appl Microbiol 62:137–189. https://doi.org/10.1016/S0065-2164(07)62006-1

    Article  CAS  PubMed  Google Scholar 

  10. van Dijl JM, Hecker M (2013) Bacillus subtilis: from soil bacterium to super-secreting cell factory. Microb Cell Fact 12:3. https://doi.org/10.1186/1475-2859-12-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Heinrich J, Drewniok C, Neugebauer E et al (2019) The YoaW signal peptide directs efficient secretion of different heterologous proteins fused to a StrepII-SUMO tag in Bacillus subtilis. Microb Cell Fact 18:31. https://doi.org/10.1186/s12934-019-1078-0

    Article  PubMed  PubMed Central  Google Scholar 

  12. Taguchi S, Ooi T, Mizuno K, Matsusaki H (2015) Advances and needs for endotoxin-free production strains. Appl Microbiol Biotechnol 99:9349–9360. https://doi.org/10.1007/s00253-015-6947-9

    Article  CAS  PubMed  Google Scholar 

  13. Rosano GL, Ceccarelli EA (2014) Recombinant protein expression in Escherichia coli: advances and challenges. Front Microbiol 5:172. https://doi.org/10.3389/fmicb.2014.00172

    Article  PubMed  PubMed Central  Google Scholar 

  14. Zhao Y, He W, Liu W-F et al (2012) Two distinct states of Escherichia coli cells that overexpress recombinant heterogeneous β-galactosidase. J Biol Chem 287:9259–9268. https://doi.org/10.1074/jbc.M111.327668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Cui W, Han L, Cheng J et al (2016) Engineering an inducible gene expression system for Bacillus subtilis from a strong constitutive promoter and a theophylline-activated synthetic riboswitch. Microb Cell Fact 15:199. https://doi.org/10.1186/s12934-016-0599-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Nguyen NH, Phan TTP, Tran TL, Nguyen HD (2014) Investigating the expression of GFP fused with HIS-TAG at N- or C-terminus using plasmid pHT253 and pHT254 in Bacillus subtilis. Sci Technol Dev J 17(4), 5–11. 10.32508/stdj.v17i4.1550.

    Google Scholar 

  17. Phan TTP, Tran LT, Schumann W, Nguyen HD (2015) Development of Pgrac100-based expression vectors allowing high protein production levels in Bacillus subtilis and relatively low basal expression in Escherichia coli. Microb Cell Fact 14:72. https://doi.org/10.1186/s12934-015-0255-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wenzel M, Müller A, Siemann-Herzberg M, Altenbuchner J (2011) Self-inducible Bacillus subtilis expression system for reliable and inexpensive protein production by high-cell-density fermentation. Appl Environ Microbiol 77:6419–6425. https://doi.org/10.1128/AEM.05219-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Phan TTP, Nguyen HD, Schumann W (2012) Development of a strong intracellular expression system for Bacillus subtilis by optimizing promoter elements. J Biotechnol 157:167–172. https://doi.org/10.1016/j.jbiotec.2011.10.006

    Article  CAS  PubMed  Google Scholar 

  20. Phan T, Huynh P, Truong T, Nguyen H (2017) A generic protocol for intracellular expression of recombinant proteins in Bacillus subtilis. Methods Mol Biol 1586:325–334. https://doi.org/10.1007/978-1-4939-6887-9_21

    Article  CAS  PubMed  Google Scholar 

  21. Tran DTM, Phan TTP, Huynh TK et al (2017) Development of inducer-free expression plasmids based on IPTG-inducible promoters for Bacillus subtilis. Microb Cell Fact 16:130. https://doi.org/10.1186/s12934-017-0747-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Phan TTP, Nguyen HD, Schumann W (2006) Novel plasmid-based expression vectors for intra- and extracellular production of recombinant proteins in Bacillus subtilis. Protein Expr Purif 46:189–195. https://doi.org/10.1016/j.pep.2005.07.005

    Article  CAS  PubMed  Google Scholar 

  23. Phan TTP, Nguyen ALT, Nguyen HD (2013) Cloning and expression of LTB in Escherichia coli and Bacillus subtilis. Nat Sci 16(1), 13–22. https://doi.org/10.32508/stdj.v16i1.1392

    Article  Google Scholar 

  24. Ngo HK, Nguyen ALT, Huynh PTK, et al. (2016) Expression and purification of listeriolysin O from Listeria monocytogenes harbouring E247M and D320K mutations in Bacillus subtilis. Sci Technol Dev J 19:20–31. https://doi.org/10.32508/stdj.v19i3.470

    Article  Google Scholar 

  25. Truong TTT, Phan TTP, Nguyen HD (2017) Purification of P24 protein expressed in Bacillus subtilis and evaluation of its immunogenicity in mice. Sci Technol Dev J 1:69–79. https://doi.org/10.32508/stdjns.v1iT1.436

    Article  Google Scholar 

  26. Zukowski MM, Miller L (1986) Hyperproduction of an intracellular heterologous protein in a sacUh mutant of Bacillus subtilis. Gene 46:247–255

    Article  CAS  Google Scholar 

  27. Peschke U, Beuck V, Bujard H et al (1985) Efficient utilization of Escherichia coli transcriptional signals in Bacillus subtilis. J Mol Biol 186:547–555

    Article  CAS  Google Scholar 

  28. Puohiniemi R, Butcher S, Tarkka E, Sarvas M (1991) High level production of Escherichia coli outer membrane proteins OmpA and OmpF intracellularly in Bacillus subtilis. FEMS Microbiol Lett 67:29–33. https://doi.org/10.1111/j.1574-6968.1991.tb04383.x

    Article  CAS  PubMed  Google Scholar 

  29. Titok MA, Chapuis J, Selezneva YV et al (2003) Bacillus subtilis soil isolates: plasmid replicon analysis and construction of a new theta-replicating vector. Plasmid 49:53–62

    Article  CAS  Google Scholar 

  30. Nguyen HD, Nguyen QA, Ferreira RC et al (2005) Construction of plasmid-based expression vectors for Bacillus subtilis exhibiting full structural stability. Plasmid 54:241–248. https://doi.org/10.1016/j.plasmid.2005.05.001

    Article  CAS  PubMed  Google Scholar 

  31. Nguyen HD, Phan TTP, Schumann W (2007) Expression vectors for the rapid purification of recombinant proteins in Bacillus subtilis. Curr Microbiol 55:89–93. https://doi.org/10.1007/s00284-006-0419-5

    Article  CAS  PubMed  Google Scholar 

  32. Phan TTP, Nguyen HD, Schumann W (2010) Establishment of a simple and rapid method to screen for strong promoters in Bacillus subtilis. Protein Expr Purif 71:174–178. https://doi.org/10.1016/j.pep.2009.11.010

    Article  CAS  PubMed  Google Scholar 

  33. Phan TTP, Nguyen HD, Schumann W (2013) Construction of a 5′-controllable stabilizing element (CoSE) for over-production of heterologous proteins at high levels in Bacillus subtilis. J Biotechnol 168:32–39. https://doi.org/10.1016/j.jbiotec.2013.07.031

    Article  CAS  PubMed  Google Scholar 

  34. Trang PTP (2007) Construction and analysis of novel controllable expression vectors for Bacillus subtilis. Doctoral thesis, University of Bayreuth, Bayreuth

  35. Young CL, Britton ZT, Robinson AS (2012) Recombinant protein expression and purification: a comprehensive review of affinity tags and microbial applications. Biotechnol J 7:620–634. https://doi.org/10.1002/biot.201100155

    Article  CAS  PubMed  Google Scholar 

  36. Waugh DS (2011) An overview of enzymatic reagents for the removal of affinity tags. Protein Expr Purif 80:283–293. https://doi.org/10.1016/j.pep.2011.08.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Walker PA, Leong LE, Ng PW et al (1994) Efficient and rapid affinity purification of proteins using recombinant fusion proteases. Biotechnology (NY) 12:601–605

    CAS  Google Scholar 

  38. Vergis JM, Wiener MC (2011) The variable detergent sensitivity of proteases that are utilized for recombinant protein affinity tag removal. Protein Expr Purif 78:139–142. https://doi.org/10.1016/j.pep.2011.04.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Antoniou G, Papakyriacou I, Papaneophytou C (2017) Optimization of soluble expression and purification of recombinant human rhinovirus type-14 3C protease using statistically designed experiments: isolation and characterization of the enzyme. Mol Biotechnol 59:407–424. https://doi.org/10.1007/s12033-017-0032-9

    Article  CAS  PubMed  Google Scholar 

  40. Cordingley MG, Callahan PL, Sardana VV et al (1990) Substrate requirements of human rhinovirus 3C protease for peptide cleavage in vitro. J Biol Chem 265:9062–9065

    CAS  PubMed  Google Scholar 

  41. Raran-Kurussi S, Tözsér J, Cherry S et al (2013) Differential temperature dependence of tobacco etch virus and rhinovirus 3C proteases. Anal Biochem 436:142–144. https://doi.org/10.1016/j.ab.2013.01.031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Choi SI, Han KS, Kim CW et al (2008) Protein solubility and folding enhancement by interaction with RNA. PLoS ONE 3:e2677. https://doi.org/10.1371/journal.pone.0002677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Horowitz S, Bardwell JCA (2016) RNAs as chaperones. RNA Biol 13:1228–1231. https://doi.org/10.1080/15476286.2016.1247147

    Article  PubMed  PubMed Central  Google Scholar 

  44. Yang SW, Jang YH, Kwon SB et al (2018) Harnessing an RNA-mediated chaperone for the assembly of influenza hemagglutinin in an immunologically relevant conformation. FASEB J 32:2658–2675. https://doi.org/10.1096/fj.201700747RR

    Article  PubMed  PubMed Central  Google Scholar 

  45. Feng Y, Xu Q, Yang T et al (2014) A novel self-cleavage system for production of soluble recombinant protein in Escherichia coli. Protein Expr Purif 99:64–69. https://doi.org/10.1016/j.pep.2014.04.001

    Article  CAS  PubMed  Google Scholar 

  46. Xu H, Wang Q, Zhang Z et al (2019) A simplified method to remove fusion tags from a xylanase of Bacillus sp. HBP8 with HRV 3C protease. Enzyme Microb Technol 123:15–20. https://doi.org/10.1016/j.enzmictec.2019.01.004

    Article  CAS  PubMed  Google Scholar 

  47. Paccez JD, Nguyen HD, Luiz WB et al (2007) Evaluation of different promoter sequences and antigen sorting signals on the immunogenicity of Bacillus subtilis vaccine vehicles. Vaccine 25:4671–4680. https://doi.org/10.1016/j.vaccine.2007.04.021

    Article  CAS  PubMed  Google Scholar 

  48. Cui W, Han L, Suo F et al (2018) Exploitation of Bacillus subtilis as a robust workhorse for production of heterologous proteins and beyond. World J Microbiol Biotechnol 34:145. https://doi.org/10.1007/s11274-018-2531-7

    Article  CAS  PubMed  Google Scholar 

  49. Öztürk S, Ergün BG, Çalık P (2017) Double promoter expression systems for recombinant protein production by industrial microorganisms. Appl Microbiol Biotechnol 101:7459–7475. https://doi.org/10.1007/s00253-017-8487-y

    Article  CAS  PubMed  Google Scholar 

  50. Song Y, Nikoloff JM, Zhang D (2015) Improving protein production on the level of regulation of both expression and secretion pathways in Bacillus subtilis. J Microbiol Biotechnol 25:963–977. https://doi.org/10.4014/jmb.1501.01028

    Article  CAS  PubMed  Google Scholar 

  51. Westers H, Dorenbos R, van Dijl JM et al (2003) Genome engineering reveals large dispensable regions in Bacillus subtilis. Mol Biol Evol 20:2076–2090. https://doi.org/10.1093/molbev/msg219

    Article  CAS  PubMed  Google Scholar 

  52. Ara K, Ozaki K, Nakamura K et al (2007) Bacillus minimum genome factory: effective utilization of microbial genome information. Biotechnol Appl Biochem 46:169–178. https://doi.org/10.1042/BA20060111

    Article  CAS  PubMed  Google Scholar 

  53. Aguilar Suárez R, Stülke J, van Dijl JM (2019) Less is more: toward a genome-reduced Bacillus cell factory for “difficult proteins”. ACS Synth Biol 8:99–108. https://doi.org/10.1021/acssynbio.8b00342

    Article  CAS  PubMed  Google Scholar 

  54. Saito H, Shibata T, Ando T (1979) Mapping of genes determining nonpermissiveness and host-specific restriction to bacteriophages in Bacillus subtilis Marburg. Mol Gen Genet 170:117–122

    Article  CAS  Google Scholar 

Download references

Funding

This research was funded by the Department of Science and Technology of Ho Chi Minh City, Vietnam under Grant Number 1022/QĐ-SKHCN.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hoang Duc Nguyen.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Research Involving Human and Animal Rights

This study did not use animals or samples from human for experiments.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 16536 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Le, V.D., Phan, T.T.P., Nguyen, T.M. et al. Using the IPTG-Inducible Pgrac212 Promoter for Overexpression of Human Rhinovirus 3C Protease Fusions in the Cytoplasm of Bacillus subtilis Cells. Curr Microbiol 76, 1477–1486 (2019). https://doi.org/10.1007/s00284-019-01783-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-019-01783-9

Navigation