Skip to main content
Log in

Influence of Phenotypic Dissociation in Bacillus subtilis Strain ET-1 on Iturin A Production

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Iturin A is a very important cyclic lipopeptide produced by several B. subtilis strains and has large commercial and therapeutic application potentials but its production on industrial scale has not been realized yet. In the present study, we have observed that the strain ET-1 of Bacillus subtilis, a producer of Iturin A, can present at least three different colony morphologies, which we arbitrarily called Rough, Smooth, and Mucoid morphotypes (R-, S-, and M-form). Performing HPLC analysis, a significant difference between the amounts of Iturin A produced by the three morphotypes was found. The morphotype R-form showed the highest productivity with yields about 10 and 100 times higher than morphotypes S and M, respectively. The results show that the production of Iturin A by B. subtilis could be strongly influenced by the phenotypic heterogeneity of cells within the inoculum. Indeed, we have observed that, pasteurizing the inoculum before seeding in order to improve the homogeneity removing the phenotypes less able to synthesize the Iturin A, its yields in a bench-scale production could be significantly improved. This can represent an important control factor also at industrial scale to improve the Iturin A yields, the robustness, the replicability, and consequently the cost-effectiveness of fermentation processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ehrenberg CG (1838) Infusionsthierchen als volkommene Organismen. Leipzig

  2. Earl AM, Losick R, Kolter R (2008) Ecology and genomics of Bacillus subtilis. Trends Microbiol 16(6):269. https://doi.org/10.1016/j.tim.2008.03.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Zweers JC, Barák I, Becher D, Driessen AJ, Hecker M, Kontinen VP, Saller MJ, Vavrová L, van Dijl JM (2008) Towards the development of Bacillus subtilis as a cell factory for membrane proteins and protein complexes. Microb Cell Fact 7:10. https://doi.org/10.1186/1475-2859-7-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Leclère V, BeÂcher M, Adam A, Guez JS, Wathelet B, Ongena M et al (2005) Mycosubtilin overproduction by Bacillus subtilis BBG100 enhances the organism's antagonistic and biocontrol activities. Appl Environ Microbiol 71:4577–4584. https://doi.org/10.1128/AEM.71.8.4577-4584.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Calvo-Garrido C, Roudet J, Aveline N, Davidou L, Dupin S, Fermaud M (2019) Microbial antagonism toward Botrytis bunch rot of grapes in multiple field tests using one Bacillus ginsengihumi strain and formulated biological control products. Front Plant Sci 10:105. https://doi.org/10.3389/fpls.2019.00105

    Article  PubMed  PubMed Central  Google Scholar 

  6. Arrebola E, Jacobs R, Korsten L (2010) Iturin A is the principal inhibitor in the biocontrol activity of Bacillus amyloliquefaciens PPCB004 against postharvest fungal pathogens. J Appl Microbiol 108:386–395. https://doi.org/10.1111/j.1365-2672.2009.04438.x

    Article  CAS  PubMed  Google Scholar 

  7. Harwood CR, Mouillon JM, Pohl S, Arnau J (2018) Secondary metabolite production and the safety of industrially important members of the Bacillus subtilis group. FEMS Microbiol Rev 42(6):721–738. https://doi.org/10.1093/femsre/fuy028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ambrico A, Trupo M (2017) Efficacy of cell free supernatant from Bacillus subtilis ET-1, an Iturin A producer strain, on biocontrol of green and gray mold. Postharvest Biol Technol 134:5–10. https://doi.org/10.1016/j.postharvbio.2017.08.001

    Article  Google Scholar 

  9. Calvo H, Mendiara I, Arias E, Blanco D, Venturini ME (2019) The role of Iturin A from B. amyloliquefaciens BUZ-14 in the inhibition of the most common postharvest fruit rots. Food Microbiol 82:62–69. https://doi.org/10.1016/j.fm.2019.01.010

    Article  CAS  PubMed  Google Scholar 

  10. Dey G, Bharti R, Dhanarajan G, Das S, Dey KK, Kumar BN, Sen R, Mandal M (2015) Marine lipopeptide Iturin A inhibits Akt mediated GSK3beta and FoxO3a signaling and triggers apoptosis in breast cancer. Sci Rep 5:10316. https://doi.org/10.1038/srep10316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhao HB, Shao DY, Jiang CM, Shi JL, Li Q, Huang QS, Rajoka MSR, Yang H, Jin ML (2017) Biological activity of lipopeptides from Bacillus. Appl Microbiol Biotechnol 101(15):5951–5960. https://doi.org/10.1007/s00253-017-8396-0

    Article  CAS  PubMed  Google Scholar 

  12. Zhao H, Yan L, Zhang Y, Lei S, Zhao X, Shao D, Jiang C, Shi J, Sunet H (2018) Potential of Bacillus subtilis lipopeptides in anti-cancer I: induction of apoptosis and paraptosis and inhibition of autophagy in K562 cells. AMB Exp 8:78. https://doi.org/10.1186/s13568-018-0606-3

    Article  Google Scholar 

  13. Jin H, Li K, Niu Y, Guo M, Hu C, Chen S, Huang F (2015) Continuous enhancement of Iturin A production by Bacillus subtilis with a stepwise two-stage glucose feeding strategy. BMC Biotechnol 15:53

    Article  PubMed  PubMed Central  Google Scholar 

  14. Stein T (2005) Bacillus subtilis antibiotics: structures, syntheses and specific functions. Mol Microbiol 56:845–857. https://doi.org/10.1111/j.1365-2958.2005.04587.x

    Article  CAS  PubMed  Google Scholar 

  15. Besson F, Chevanet C, Michel G (1987) Influence of the culture medium on the production of Iturin A by Bacillus subtilis. J Gen Microbiol 133:767–772

    CAS  PubMed  Google Scholar 

  16. Lin HY, Rao YK, Wu WS, Tzeng YM (2007) Ferrous ion enhanced lipopeptide antibiotic Iturin A production from Bacillus amyloliquefaciens B128. Int J Appl Sci Eng 5:123–132

    Google Scholar 

  17. Hsieh FC, Lin TC, Meng M, Kao SS (2008) Comparing methods for identifying Bacillus strains capable of producing the antifungal lipopeptide Iturin A. Curr Microbiol 56:1–5

    Article  CAS  PubMed  Google Scholar 

  18. Luo Y, Guoyi Z, Zhen Z, Xiaohui W, Wei R, Qirong S (2013) Optimization of medium composition for lipopeptide production from Bacillus subtilis N7 using response surface methodology. Korean J Microbiol Biotechnol 41:52–59

    Article  CAS  Google Scholar 

  19. Yao D, Ji Z, Wang C, Qi G, Zhang L, Ma X, Chen S (2012) Co-producing Iturin A and poly-γ-glutamic acid from rape seed meal under solid state fermentation by the newly isolated Bacillus subtilis strain 3–10. World J Microbiol Biotechnol 28:985–991

    Article  CAS  PubMed  Google Scholar 

  20. Narendra Kumar P, Swapna TH, Khan MY, Reddy G, Hameeda B (2017) Statistical optimization of antifungal Iturin A production from Bacillus amyloliquefaciens RHNK22 using agro-industrial wastes. Saudi J Biol Sci 24:1722–1740

    Article  CAS  PubMed  Google Scholar 

  21. Batson HC (1949) Dissociation and life cycle of Bacillus subtilis. Electronic Theses and Dissertations https://openprairie.sdstate.edu/etd/1949

  22. Kearns DB, Losick R (2005) Cell population heterogeneity during growth of Bacillus subtilis. Genes Dev 19(24):3083–3094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Fujita M, González-Pastor JE, Losick R (2005) High- and low-threshold genes in the Spo0A regulon of Bacillus subtilis. J Bacteriol 187:1357–1368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kaern M, Elston TC, Blake WJ, Collins JJ (2005) Stochasticity in gene expression: from theories to phenotypes. Nat Rev Genet 6:451–464

    Article  CAS  PubMed  Google Scholar 

  25. Avery SV (2006) Microbial cell individuality and the underlying sources of heterogeneity. Nat Rev Microbiol 4:577–587

    Article  CAS  PubMed  Google Scholar 

  26. Berditsch M, Afonin S, Ulrich AS (2007) The ability of Aneurinibacillus migulanus (Bacillus brevis) to produce the antibiotic gramicidin S is correlated with phenotype variation. Appl Environ Microbiol 73:6620–6628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ambrico A, Trupo M, Lopez L (2010) Identification and characterization of Bacillus subtilis ET-1. A strain with antifungal activity against fruit rot pathogens. J Plant Pathol 92(4S):72. https://doi.org/10.4454/jpp.v92i4sup.347

    Article  Google Scholar 

  28. Ambrico A, Trupo M (2011) Evaluation of the antifungal activity of morphologically distinct colonies of Bacillus subtilis strain ET-1. J Plant Pathol 93(4S):25. https://doi.org/10.4454/jpp.v93i4.2359

    Article  Google Scholar 

  29. Dragoš A, Lakshmanan N, Martin M, Horváth B, Maróti G, Falcón García C, Lieleg O, Kovács AT (2018) Evolution of exploitative interactions during diversification in Bacillus subtilis biofilms. FEMS Microbiol Ecol 94(1):fix155. https://doi.org/10.1093/femsec/fix155

    Article  CAS  Google Scholar 

  30. Braun W (1947) Bacterial dissociation. A critical review of a phenomenon of bacterial variation. Bacteriol Rev 11:75–114

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Pryor SW, Siebert KJ, Gibson DM, Gossett JM, Walker LP (2007) Modeling production of antifungal compounds and their role in biocontrol product inhibitory activity. J Agric Food Chem 55:9530–9536. https://doi.org/10.1021/jf0719252

    Article  CAS  PubMed  Google Scholar 

  32. Caldeira AT, Feio SS, Arteiro JM, Coelho AV, Roseiro JC (2008) Environmental dynamics of Bacillus amyloliquefaciens CCMI 1051 antifungal activity under different nitrogen patterns. J Appl Microbiol 104:808–816. https://doi.org/10.1111/j.1365-2672.2007.03601.x

    Article  CAS  PubMed  Google Scholar 

  33. Zhang Z, Ding ZT, Zhong J, Zhou JY, Shu D, Luo D, Yang J, Tan H (2017) Improvement of Iturin A production in Bacillus subtilis ZK0 by overexpression of the comA and sigA genes. Lett Appl Microbiol 64:452–458. https://doi.org/10.1111/lam.12739

    Article  CAS  PubMed  Google Scholar 

  34. Veening JW, Hamoen LW, Kuipers OP (2005) Phosphatases modulate the bistable sporulation gene expression pattern in Bacillus subtilis. Mol Microbiol 56:1481–1494. https://doi.org/10.1111/j.1365-2958.2005.04659.x

    Article  CAS  PubMed  Google Scholar 

  35. Dubnau D, Losick R (2006) Bistability in bacteria. Mol Microbiol 61:564–572. https://doi.org/10.1111/j.1365-2958.2006.05249.x

    Article  CAS  PubMed  Google Scholar 

  36. Wang JW, Zhang JJ, Yuan ZJ, Zhou TS (2007) Noise-induced switches in network systems of the genetic toggle switch. BMC Syst Biol 1(1):50

    Article  PubMed  PubMed Central  Google Scholar 

  37. Defeu Soufo HJ (2016) A novel cell type enables B. subtilis to escape from unsuccessful sporulation in minimal medium. Front Microbiol 7:1810

    Article  PubMed  PubMed Central  Google Scholar 

  38. Dang Y, Zhao F, Liu X, Fan X, Huang R, Gao W, Wang S, Yang C (2019) Enhanced production of antifungal lipopeptide Iturin A by Bacillus amyloliquefaciens LL3 through metabolic engineering and culture conditions optimization. Microb Cell Fact 18:68. https://doi.org/10.1186/s12934-019-1121-1

    Article  PubMed  PubMed Central  Google Scholar 

  39. Qian S, Lu H, Meng P, Zhang C, Lv F, Bie X, Lu Z (2015) Effect of inulin on efficient production and regulatory biosynthesis of bacillomycin D in Bacillus subtilis fmbJ. Bioresour Technol 179:260–267. https://doi.org/10.1016/j.biortech.2014.11.086

    Article  CAS  PubMed  Google Scholar 

  40. Smits WK, Kuipers OP, Veening JW (2006) Phenotypic variation in bacteria: the role of feedback regulation. Nat Rev Microbiol 4:259. https://doi.org/10.1038/nrmicro1381

    Article  CAS  PubMed  Google Scholar 

  41. Čepl J, Blahůšková A, Neubauer Z, Markoš A (2016) Variations and heredity in bacterial colonies. Commun Integr Biol 9(6):e1261228. https://doi.org/10.1080/19420889.2016.1261228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kearns DB, Chu F, Branda SS, Kolter R, Losick R (2005) A master regulator for biofilm formation by Bacillus subtilis. Mol Microbiol 55:739–749

    Article  CAS  PubMed  Google Scholar 

  43. Raj A, van Oudenaarden A (2008) Nature, nurture, or chance: stochastic gene expression and its consequences. Cell 135:216–226. https://doi.org/10.1016/j.cell.2008.09.050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Fernandes RL, Nierychlo M, Lundin L, Pedersen AE, Puentes Tellez PE, Dutta A et al (2011) Experimental methods and modeling techniques for description of cell population heterogeneity. Biotechnol Adv 29:575–599. https://doi.org/10.1016/j.biotechadv.2011.03.007

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alfredo Ambrico.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ambrico, A., Trupo, M. & Magarelli, R.A. Influence of Phenotypic Dissociation in Bacillus subtilis Strain ET-1 on Iturin A Production. Curr Microbiol 76, 1487–1494 (2019). https://doi.org/10.1007/s00284-019-01764-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-019-01764-y

Navigation