Skip to main content
Log in

Characterization of Extracellular Biosurfactants Expressed by a Pseudomonas putida Strain Isolated from the Interior of Healthy Roots from Sida hermaphrodita Grown in a Heavy Metal Contaminated Soil

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Pseudomonas putida E41 isolated from root interior of Sida hermaphrodita (grown on a field contaminated with heavy metals) showed high biosurfactant activity. In this paper, we describe data from mass spectrometry and genome analysis, to improve our understanding on the phenotypic properties of the strain. Supernatant derived from P. putida E41 liquid culture exhibited a strong decrease in the surface tension accompanied by the ability for emulsion stabilization. We identified extracellular lipopeptides, putisolvin I and II expression but did not detect rhamnolipids. Their presence was confirmed by matrix-assisted laser desorption and ionization (MALDI) TOF/TOF technique. Moreover, ten phospholipids (mainly phosphatidylethanolamines PE 33:1 and PE 32:1) which were excreted by vesicles were also detected. In contrast the bacterial cell pellet was dominated by phosphatidylglycerols (PGs), which were almost absent in the supernatant. It seems that the composition of extracellular (secreted to the environment) and cellular lipids in this strain differs. Long-read sequencing and complete genome reconstruction allowed the identification of a complete putisolvin biosynthesis pathway. In the genome of P. putida E41 were also found all genes involved in glycerophospholipid biosynthesis, and they are likely responsible for the production of detected phospholipids. Overall this is the first report describing the expression of extracellular lipopeptides (identified as putisolvins) and phospholipids by a P. putida strain, which might be explained by the need to adapt to the highly contaminated environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Abdel-Mawgoud AM, Lépine F, Déziel E (2010) Rhamnolipids: diversity of structures, microbial origins and roles. Appl Microbiol Biotechnol 86:1323–1336. https://doi.org/10.1007/s00253-010-2498-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Araujo HWC, Andrade RFS, Montero-Rodriguez D, Rubio-Ribeaux D, Alvares da Silva CA, Campos-Takaki MC (2019) Sustainable biosurfactant produced by Serratia marcescens UCP 1549 and its suitability for agricultural and marine bioremediation applications. Microb Cell Fact 18:2. https://doi.org/10.1186/s12934-018-1046-0

    Article  PubMed  PubMed Central  Google Scholar 

  3. Arnold S, Henkel M, Wanger J, Wittgens A, Rosenau F, Hausman R (2019) Heterologous rhamnolipid biosynthesis by P. putida KT2440 on bio-oil derived small organic acids and fractions. AMB Express 9:80. https://doi.org/10.1186/s13568-019-0804-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Banat IM, Franzetti A, Gandolfi I, Bestetti G, Martinotti G, Fracchia L, Smyth TJ, Marchant R (2010) Microbial biosurfactants production, applications and future potential. Appl Microbiol Biotechnol 87:427–444. https://doi.org/10.1007/s00253-010-2589-0

    Article  CAS  PubMed  Google Scholar 

  5. Behrens B, Helmer PO, Tiso T, Blank LM, Hayen H (2016) Rhamnolipid biosurfactant analysis using online turbulent flow chromatography-liquid chromatography-tandem mass spectrometry. J Chromatogr A 1465:90–97. https://doi.org/10.1016/j.chroma.2016.08.044

    Article  CAS  PubMed  Google Scholar 

  6. Bernat P, Paraszkiewicz K, Siewiera P, Moryl M, Płaza G, Chojniak J (2016) Lipid composition in a strain of Bacillus subtilis, a producer of iturin A lipopeptides that are active against uropathogenic bacteria. World J Microbiol Biotechnol 32:157. https://doi.org/10.1007/s11274-016-2126-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Blin K, Medema MH, Kazempour D, Fischbach MA, Breitling R, Takano E, Weber T (2013) Antismash 2.0—a versatile platform for genome mining of secondary metabolite producers. Nucl Acid Res 41:204–212. https://doi.org/10.1093/nar/gkt449

    Article  Google Scholar 

  8. Blin K, Wolf T, Chevrette MG, Lu X, Schwalen CJ, Kautsar SA, Suarez Duran HG, de Los Santos ELC, Kim HU, Nave M, Dickschat JS, Mitchell DA, Shelest E, Breitling R, Takano E, Lee SY, Weber T, Medema MH (2017) antiSMASH 4.0-improvements in chemistry prediction and gene cluster boundary identification. Nuc Acids Res 45:36–41. https://doi.org/10.1093/nar/gkx319

    Article  CAS  Google Scholar 

  9. Blin K, Shaw S, Steinke K, Villebro R, Ziemert N, Lee SY, Medema MH, Weber T (2019) antiSMASH 5.0: updates to the secondary metabolite genome mining pipeline. Nucl Acids Res 1:310–318. https://doi.org/10.1093/nar/gky1060

    Article  CAS  Google Scholar 

  10. Brader G, Compant S, Mitter B, Trognitz F, Sessitsch A (2014) Metabolic potential of endophytes bacteria. Curr Opin Biotechnol 27:30–37. https://doi.org/10.1016/j.copbio.2013.09.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chojniak J, Cania B, Nesme J, Błaszczyk E, Powałowski S, Schloter M, Płaza G, Ratman-Kłosińska I (2017) Diversity of endophytes and rhizobacteria isolated from energy plants growing on heavy metals contaminated soil. In: Rudnicka K, Gajewski A, Kowalewicz-Kulbat M, Druszczyńska M, Sadowska B (eds.) Postępy Mikrobiologii, Vol 56. Polskie Towarzystwo Mikrobiologów, Warszawa

    Google Scholar 

  12. Compant S, Clement C, Sessitsch A (2010) Plant growth-promoting bacteria in the rhizo- and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization. Soil Biol Biochem 42:669–678. https://doi.org/10.1016/j.soilbio.2009.11.024

    Article  CAS  Google Scholar 

  13. Desai JD, Banat IM (1997) Microbial production of surfactants and their commercial potential. Microbiol Mol Biol Rev 61:47–64

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Dubern JF, Bloemberg GV (2006) Influence of environmental conditions on putisolvins I and II production in Pseudomonas putida strain PCL1445. FEMS Microbiol Lett 263:169–175. https://doi.org/10.1111/j.1574-6968.2006.00406.x

    Article  CAS  PubMed  Google Scholar 

  15. George S, Jayachandran K (2013) Production and characterization of rhamnolipid biosurfactant from waste frying coconut oil using a novel Pseudomonas aeruginosa D. J Appl Microbiol 114:373–383. https://doi.org/10.1111/jam.12069

    Article  CAS  PubMed  Google Scholar 

  16. Haft DH, DiCuccio M, Bagretdin A, Brover V, Chetvernin V, O’Neill K et al (2017) RefSeq: an update on prokaryotic genome annotation and curation. Nuc Acids Res 46:851–860. https://doi.org/10.1093/nar/gkx1068

    Article  CAS  Google Scholar 

  17. Jan AT (2017) Outer membrane vesicles (OMVs) of gram-negative bacteria: a perspective update. Front Microbiol 8:1053. https://doi.org/10.3389/fmicb.2017.01053

    Article  PubMed  PubMed Central  Google Scholar 

  18. Janek T, Lukaszewicz M, Krasowska A (2013) Identification and characterization of biosurfactants produced by the Arctic bacterium Pseudomonas putida BD2. Colloids Surf B 110:379–386. https://doi.org/10.1016/j.colsurfb.2013.05.008

    Article  CAS  Google Scholar 

  19. Khademolhosseini R, Jafari A, Mousavi SM, Hajfarajollah H, Noghabi KA, Manteghian M (2019) Physicochemical characterization and optimization of glycolipid biosurfactant production by a native strain of Pseudomonas aeruginosa HAK01 and its performance evaluation for the MEOR process. RSC Adv 9:7932. https://doi.org/10.1039/c8ra10087j

    Article  CAS  Google Scholar 

  20. Kobayashi H, Uematsu K, Hirayama H, Horikoshi K (2000) Novel toluene elimination system in a toluene-tolerant microorganism. J Bacteriol 82:6451–6455. https://doi.org/10.1128/jb.182.22.6451-6455.2000

    Article  Google Scholar 

  21. Kuiper I, Lagendijk EL, Pickford R, Derrick JP, Lamers GE, Thomas-Oates JE, Lugtenberg BJ, Bloemberg GV (2004) Characterization of two Pseudomonas putida lipopeptide biosurfactants, putisolvin I and II, which inhibit biofilm formation and break down existing biofilms. Mol Microbiol 51:97–113. https://doi.org/10.1046/j.1365-2958.2003.03751.x

    Article  CAS  PubMed  Google Scholar 

  22. Kruijt M, Tran H, Raaijmakers JM (2009) Functional, genetic and chemical characterization of biosurfactants produced by plant growth-promoting Pseudomonas putida 267. J Appl Microbiol 107:546–556. https://doi.org/10.1111/j.1365-2672.2009.04244.x

    Article  CAS  PubMed  Google Scholar 

  23. Li Z, Zhang Y, Lin J, Wang W, Li S (2019) High-yield di-rhamnolipid production by Pseudomonas aeruginosa YM4 and its potential application in MEOR. Molecules 24:1433

    Article  CAS  Google Scholar 

  24. Loeschcke A, Thies S (2015) Pseudomonas putida—a versatile host for the production of natural products. Appl Microbiol Biotechnol 99:6197–6214. https://doi.org/10.1007/s00253-015-6745-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ludwig-Muller J (2015) Plants and endophytes: equal partners in secondary metabolite production ? Biotechnol Lett 37:1325–1334. https://doi.org/10.1007/s10529-015-1814-4

    Article  CAS  PubMed  Google Scholar 

  26. Morikawa M, Hirata Y, Imanaka T (2000) A study on the structure function relationship of lipopeptide biosurfactants. Biochim Biophys Acta 1488:211–218. https://doi.org/10.1016/s1388-1981(00)00124-4

    Article  CAS  PubMed  Google Scholar 

  27. Mukherjee AK, Das K (2010) Microbial surfactants and their potential applications: an overview. Adv Exp Med Biol 672:54–64

    Article  CAS  PubMed  Google Scholar 

  28. Nesme J, Cania B, Zadel U, Scholer A, Płaza G, Schloter M (2017) Complete genome sequences of two plant-associated Pseudomonas putida isolates with increased heavy-metal tolerance. Genome Ann 5(1–2):e01330–e1417. https://doi.org/10.1128/genomeA.01330-17

    Article  Google Scholar 

  29. Nwaguma IV, Chikere CB, Okpokwasili GC (2016) Isolation, characterization, and application of biosurfactant by Klebsiella pneumoniae strain IVN51 isolated from hydrocarbon-polluted soil in Ogoniland, Nigeria. Biores Bioproc 3:40. https://doi.org/10.1186/s40643-016-0118-4

    Article  Google Scholar 

  30. Olasanmi IK, Thring RW (2018) The role of biosurfactants in the continued drive for environmental sustainability. Sustainability 10:4817. https://doi.org/10.3390/su10124817

    Article  Google Scholar 

  31. Paraszkiewicz K (2016). Biosurfactant enhancement factors in microbial degradation processes. In: Długoński J (ed) Microbial biodegradation: from omics to function and application, 1st edn. Caister Academic Press, Wymondham, pp 167-182

    Google Scholar 

  32. Paraszkiewicz K, Bernat P, Siewiera P, Moryl M, Sas-Paszt L, Trzciński P, Jałowiecki Ł, Płaza G (2017) Agricultural potential of rhizospheric Bacillus subtilis strains exhibiting varied efficiency of surfactin production. Sci Horticul 225:802–809. https://doi.org/10.1016/j.scienta.2017.07.034

    Article  CAS  Google Scholar 

  33. Paraszkiewicz K, Bernat P, Kuśmierska A, Płaza G (2018) Structural identification of lipopeptides biosurfactants produced by Bacillus subtilis strains grown on the media obtained from renewable natural resources. J Environ Manag 209:65–70. https://doi.org/10.1016/j.jenvman.2017.12.033

    Article  CAS  Google Scholar 

  34. Płaza G (2014) Biosurfactants: green surfactants. Polish Academy of Science, Warsaw.

    Google Scholar 

  35. Pogrzeba M, Rusinowski S, Krzyżak J (2018) Macroelements and heavy metals content in energy crops cultivated on contaminated soil under different fertilization—case studies on autumn harvest. Environ Sci Pollut Res 25:12096–12106. https://doi.org/10.1007/s11356-018-1490-8

    Article  CAS  Google Scholar 

  36. Raaijmakers JM, De Bruijn I, Nybroe O, Ongena M (2010) Natural functions of lipopeptides from Bacillus and Pseudomonas: more than surfactants and antibiotics. FEMS Microbiol Rev 34:1037–1062. https://doi.org/10.1111/j.1574-6976.2010.00221.x

    Article  CAS  PubMed  Google Scholar 

  37. Rühl J, Hein EM, Hayen H, Schmid A, Blank LM (2012) The glycerophospholipid inventory of Pseudomonas putida is conserved between strains and enables growth condition-related alterations. Microb Biotechnol 5:45–58. https://doi.org/10.1111/j.1751-7915.2011.00286.x

    Article  CAS  PubMed  Google Scholar 

  38. Rutter BD, Innes RW (2018) Extracellular vesicles as key mediators of plant-microbe interactions. Curr Opin Plant Biol 44:16–22. https://doi.org/10.1016/j.pbi.2018.01.008

    Article  CAS  PubMed  Google Scholar 

  39. Shekhar S, Sundaramanickam A, Balasubramanian T (2015) Biosurfactant producing microbes and their potential applications: a review. Crit Rev Environ Sci Technol 45:1522–1554. https://doi.org/10.1080/10643389.2014.955631

    Article  CAS  Google Scholar 

  40. Singh A, van Hamme JD, Ward OP (2007) Surfactants in microbiology and biotechnology: Part 2. Applications aspects Biotechnol Adv 25:99–121. https://doi.org/10.1016/j.biotechadv.2006.10.004

    Article  CAS  PubMed  Google Scholar 

  41. Tashiro Y, Inagaki A, Shimizu M, Ichikawa S, Takaya N, Nakajima-Kambe T, Uchiyama H, Nomura N (2011) Characterization of phospholipids in membrane vesicles derived from Pseudomonas aeruginosa. Biosci Biotechnol Biochem 75(3):605–607. https://doi.org/10.1271/bbb.100754

    Article  CAS  PubMed  Google Scholar 

  42. Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A, Sakthikumar S, Cuomo CA, Zeng Q, Wortman J, Young SK, Earl AM (2014) Pilon: An integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS ONE 9:e112963. https://doi.org/10.1371/journal.pone.0112963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ye L, Hildebrand F, Dingemans J, Ballet S, Laus G, Matthijs S, Berendsen R, Cornelis P (2014) Draft genome sequence analysis of a Pseudomonas putida W15Oct28 strain with antagonistic activity to gram-positive and Pseudomonas sp. pathogens. PLoS ONE 9(11):e110038. https://doi.org/10.1371/journal.pone.0110038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zhao H, Shao D, Jiang C, Shi J, Li Q, Huang Q, Rajoka MSR, Yang H, Jin M (2017) Biological activity of lipopeptides from Bacillus. Appl Microbiol Biotechnol 101:5951–5960. https://doi.org/10.1007/s00253-017-8396-0

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was carried out under Maria Curie-Sklodowska Actions IAPP of 7th UE Programme for Research, Technological Development and Demonstration under Grant Agreement No 610797, acronym “Phyto2Energy”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Grażyna Płaza.

Ethics declarations

Conflict of interest

The authors declare that they no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 15 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bernat, P., Nesme, J., Paraszkiewicz, K. et al. Characterization of Extracellular Biosurfactants Expressed by a Pseudomonas putida Strain Isolated from the Interior of Healthy Roots from Sida hermaphrodita Grown in a Heavy Metal Contaminated Soil. Curr Microbiol 76, 1320–1329 (2019). https://doi.org/10.1007/s00284-019-01757-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-019-01757-x

Navigation