Skip to main content
Log in

Evaluation of Plantaricin Genes Expression During Fermentation of Raphanus sativus Roots with a Plantaricin-Producing Lactobacillus plantarum Starter

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

The aim of the present study was to assess the transcription of the plnE/F, plnN, plnG, plnD and plnI genes during lactic acid fermentation of radish (Raphanus sativus) roots by Lactobacillus plantarum strain LQC 740 at 20 and 30 °C. At both temperatures, this strain dominated the fermentation process, as indicated by (GTG)5 analysis. A total of five pln genes were detected in the genome of this strain, namely plnE/F, plnN, plnG, plnD and plnI. Regarding plantaricin genes expression, no regulation was observed in the majority of the samples at both temperatures, therefore, the transcription of the pln genes was not affected by the experimental conditions, i.e. radish fermentation vs. growth in MRS broth. Although transcription of the pln genes was similar between the two conditions, bacteriocin activity was different. The maximum plantaricin activity was 87.5 AU/mL during radish fermentation and 700 AU/mL during growth in MRS broth. Thus, no apparent correlation between bacteriocin activity and transcription level of the five pln genes could be established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Paramithiotis S, Papoutsis G, Drosinos EH (2017) Lactic acid fermentation of fruits and vegetables: an overview. In: Paramithiotis S (ed) Lactic acid fermentation of fruits and vegetables. CRC Science, Boca Raton, pp 1–18

    Chapter  Google Scholar 

  2. Abbasiliasi S, Tan JS, Ibrahim TAT, Bashokouh F, Ramakrishnan NR, Mustafa S, Ariff AB (2017) Fermentation factors influencing the production of bacteriocins by lactic acid bacteria: a review. RSC Adv 7:29395–29420

    Article  CAS  Google Scholar 

  3. Drosinos EH, Mataragas M, Paramithiotis S (2008) Antimicrobial activity of bacteriocins and applications. In: Toldra F (ed) Meat biotechnology. Springer, New York, pp 375–397

    Chapter  Google Scholar 

  4. Todorov SD (2008) Bacteriocin production by Lactobacillus plantarum AMA-K isolated from amasi, a Zimbabwean fermented milk product and study of the adsorption of bacteriocin AMA-K to Listeria sp. Braz J Microbiol 39:178–187

    Article  PubMed  PubMed Central  Google Scholar 

  5. Brinques GB, Peralba MC, Ayub MAZ (2010) Optimization of probiotic and lactic acid production by Lactobacillus plantarum in submerged bioreactor systems. J Ind Microbiol Biotechnol 37:205–212

    Article  CAS  PubMed  Google Scholar 

  6. Prins WA, Botha M, Botes M, Kwaadsteniet M, Endo A, Dicks LMT (2010) Lactobacillus plantarum 24, isolated from the marula fruit (Sclerocarya birrea), has probiotic properties and harbors genes encoding the production of three bacteriocins. Curr Microbiol 61:584–589

    Article  CAS  PubMed  Google Scholar 

  7. Paramithiotis S, Hondrodimou OL, Drosinos EH (2010) Development of the microbial community during spontaneous cauliflower fermentation. Food Res Int 43:1098–1103

    Article  CAS  Google Scholar 

  8. Paramithiotis S, Tsiasiotou S, Drosinos EH (2010) Comparative study of spontaneously fermented sourdoughs originating from two regions of Greece; Peloponnesus and Thessaly. Eur Food Res Technol 231:883–890

    Article  CAS  Google Scholar 

  9. Hurtado A, Reguant C, Bordons A, Rozès N (2012) Lactic acid bacteria from fermented table olives. Food Microbiol 31:1–8

    Article  CAS  PubMed  Google Scholar 

  10. Gu CT, Li CY, Yang LJ, Huo GC (2013) Lactobacillus mudanjiangensis sp. nov., Lactobacillus songhuajiangensis sp. nov. and Lactobacillus nenjiangensis sp. nov., isolated from Chinese traditional pickle and sourdough. Int J Syst Evol Microbiol 63:4698–4706

    Article  CAS  PubMed  Google Scholar 

  11. Todorov SD (2009) Bacteriocins from Lactobacillus plantarum: production, genetic organization and mode of action. Braz J Microbiol 40:209–221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sabo SS, Vitolo M, González JMD, Oliveira RPS (2014) Overview of Lactobacillus plantarum as a promising bacteriocin producer among lactic acid bacteria. Food Res Int 64:527–536

    Article  CAS  Google Scholar 

  13. Diep DB, Havarstein LS, Nes IF (1996) Characterisation of the locus responsible for the bacteriocin production in Lactobacillus plantarum C11. J Bacteriol 178:4472–4483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Diep DB, Straume D, Kjos M, Torres C, Nes IF (2009) An overview of the mosaic bacteriocin pln loci from Lactobacillus plantarum. Peptides 30:1562–1574

    Article  CAS  PubMed  Google Scholar 

  15. Kleerebezem M, Boekhorst J, van Kranenburg R, Molenaar D, Kuipers OP, Leer R (2003) Complete genome sequence of Lactobacillus plantarum WCFS1. Proc Natl Acad Sci USA 100:1990–1995

    Article  CAS  Google Scholar 

  16. Maldonado A, Ruiz-Barba JL, Jimenez-Diaz R (2003) Purification and genetic characterisation of plantaricin NC8, a novel coculture-inducible two-peptide bacteriocin from Lactobacillus plantarum NC8. Appl Environ Microbiol 69:383–389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Navarro L, Rojo-Bezares B, Saenz Y, Diez L, Zarazaga M, Ruiz-Larrea F, Torres C (2008) Comparative study of the pln locus of the quorum-sensing regulated bacteriocin-producing L. plantarum J51 strain. Int J Food Microbiol 128:390–394

    Article  CAS  PubMed  Google Scholar 

  18. Rojo-Bezares B, Sáenz Y, Navarro L, Jiménez-Díaz R, Zarazaga M, Ruiz-Larrea F, Torres C (2008) Characterisation of a new organisation of the plantaricin locus in the inducible bacteriocin-producing Lactobacillus plantarum J23 of grape must origin. Arch Microbiol 189:491–499

    Article  CAS  PubMed  Google Scholar 

  19. Zhang ZY, Liu C, Zhu YZ, Zhong Y, Zhu YQ, Zheng HJ, Zhao GP, Wang SY, Guo XK (2009) Complete genome sequence of Lactobacillus plantarum JDM1. Genome Announc 191:5020–5021

    CAS  Google Scholar 

  20. Tai HF, Foo HL, Rahim RA, Loh TC, Abdullah MP, Yoshinobu K (2015) Molecular characterisation of new organisation of plnEF and plw loci of bacteriocin genes harbour concomitantly in Lactobacillus plantarum I-UL4. Microb Cell Fact 14:89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Nes IF, Diep DB, Havarstein LS, Brurberg MB, Eijsink VGH, Holo H (1996) Biosynthesis of bacteriocins in lactic acid bacteria. Antonie Van Leeuwenhoek 70:113–128

    Article  CAS  PubMed  Google Scholar 

  22. Straume D, Kjos M, Nes IF, Diep DB (2007) Quorum-sensing based bacteriocin production is down-regulated by N-terminally truncated species of gene activators. Mol Genet Genomics 278:283–293

    Article  CAS  PubMed  Google Scholar 

  23. Pardali E, Paramithiotis S, Papadelli M, Mataragas M, Drosinos EH (2017) Lactic acid bacteria population dynamics during spontaneous fermentation of radish (Raphanus sativus L.) roots in brine. World J Microbiol Biotechnol 33:110

    Article  CAS  PubMed  Google Scholar 

  24. Harrigan WF, McCance ME (1976) Laboratory methods in food and dairy microbiology. Academic Press, London, pp 47–49

    Google Scholar 

  25. Paramithiotis S, Kouretas K, Drosinos EH (2014) Effect of ripening stage on the development of the microbial community during spontaneous fermentation of green tomatoes. J Sci Food Agric 94:1600–1606

    Article  CAS  PubMed  Google Scholar 

  26. Ben Omar N, Abriouel H, Lucas R, Martínez-Cañamero M, Guyot J-P, Gálvez A (2006) Isolation of bacteriocinogenic Lactobacillus plantarum strains from ben saalga, a traditional fermented gruel from Burkina Faso. Int J Food Microbiol 112:44–50

    Article  CAS  Google Scholar 

  27. Hadjilouka A, Molfeta C, Panagiotopoulou O, Paramithiotis S, Mataragas M, Drosinos EH (2016) Expression of Listeria monocytogenes key virulence genes during growth in liquid medium, on rocket and melon at 4, 10 and 30°C. Food Microbiol 55:7–15

    Article  CAS  PubMed  Google Scholar 

  28. Gevers D, Huys G, Swings J (2001) Applicability of rep-PCR fingerprinting for identification of Lactobacillus species. FEMS Microbiol Lett 205:31–36

    Article  CAS  PubMed  Google Scholar 

  29. Knoll C, Divol B, du Toit M (2008) Genetic screening of lactic acid bacteria of oenological origin for bacteriocin-encoding genes. Food Microbiol 25:983–991

    Article  CAS  Google Scholar 

  30. Hurtado A, Ben Othman N, Chammem N, Hamdi M, Ferrer S, Reguant C, Bordons A, Rozès N (2011) Characterization of Lactobacillus isolates from fermented olives and their bacteriocin gene profiles. Food Microbiol 28:1514–1518

    Article  CAS  PubMed  Google Scholar 

  31. Rizzello CG, Filannino P, Di Cagno R, Calasso M, Gobbetti M (2014) Quorum-sensing regulation of constitutive plantaricin by Lactobacillus plantarum strains under a model system for vegetables and fruits. Appl Environ Microbiol 80:777–787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Doulgeraki AI, Paraskevopoulos N, Nychas GJE, Panagou EZ (2013) An in vitro study of Lactobacillus plantarum strains for the presence of plantaricin genes and their potential control of the table olive microbiota. Antonie Van Leeuwenhoek 103:821–832

    Article  CAS  PubMed  Google Scholar 

  33. Caballero-Guerrero B, Lucena-Padrós H, Maldonado-Barragán A, Ruiz-Barba JL (2013) High-salt brines compromise autoinducer-mediated bacteriocinogenic Lactobacillus plantarum survival in Spanish-style green olive fermentations. Food Microbiol 33:90–96

    Article  CAS  PubMed  Google Scholar 

  34. Rantsiou K, Mataragas M, Alessandria V, Cocolin L (2012) Expression of virulence genes of Listeria monocytogenes in food. J Food Saf 32:161–168

    Article  CAS  Google Scholar 

  35. Olesen I, Vogensen K-F, Jespersen L (2009) Gene transcription and virulence potential of Listeria monocytogenes strains after exposure to acidic and NaCl stress. Foodborne Pathog Dis 6:669–680

    Article  CAS  PubMed  Google Scholar 

  36. Van der Veen S, Abee T (2010) Importance of SigB for Listeria monocytogenes static and continuous-flow biofilm formation and disinfectant resistance. Appl Environ Microbiol 76:7854–7860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Spiros Paramithiotis.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paramithiotis, S., Papadelli, M., Pardali, E. et al. Evaluation of Plantaricin Genes Expression During Fermentation of Raphanus sativus Roots with a Plantaricin-Producing Lactobacillus plantarum Starter. Curr Microbiol 76, 909–916 (2019). https://doi.org/10.1007/s00284-019-01708-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-019-01708-6

Navigation