Skip to main content

Advertisement

Log in

Cloning and Analysis of Genes Controlling Antibacterial Activities of Burkholderia pyrrocinia Strain Lyc2

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

The Burkholderia pyrrocinia Lyc2 strain isolated from healthy plant rhizosphere showed significant antimicrobial activities against a variety of plant pathogens. In this study, a random mutation library was constructed using an EZ-Tn5 transposome kit and Erwinia amylovora was used as an indicator to screen for mutants with defective antibacterial activity. The transposon gene was verified in the chromosome of the Lyc2 strain using polymerase chain reaction (PCR). The gene that was disrupted by transposon was amplified by rescue cloning for functional and bioinformatics analyses. Antibacterial analysis indicated that the mutant Lyc2-MT2918 was defective in antibacterial activity. Sequence alignment of the mutant suggested that the disrupted gene Glu-2918 was homologous to the glutathione (GSH) synthase gene Bamb-2918 of strain B. ambifaria AMMD. Genetic functional analysis and complementary assay of the disrupted gene, which was predicted to encode GSH synthase, indicated the essential role of the Glu-2918 gene in the antibacterial activity of strain Lyc2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Burkholder WH (1950) Sour skin, a bacterial rot of onion bulbs. Phytopathology 40:115–117

    Google Scholar 

  2. Peeters C, Zlosnik JEA, Spilker T, Hird TJ, LiPuma JJ, Vandamme P (2013) Burkholderia pseudomultivorans sp. nov., a novel Burkholderia cepacia complex species from human respiratory samples and the rhizosphere. Syst Appl Microbiol 36:483–489

    Article  PubMed  Google Scholar 

  3. Vandamme P, Dawyndt P (2011) Classification and identification of the Burkholderia cepacia complex: past, present and future. Syst Appl Microbiol 34:87–95

    Article  CAS  PubMed  Google Scholar 

  4. Caballero-Mellado J, Martinez-Aguilar L, Paredes-Valdez G, Santos PE (2004) Burkholderia unamae sp. nov., an N2-fixing rhizospheric and endophytic species. Int J Syst Evol Microbiol 54:1165–1172

    Article  CAS  PubMed  Google Scholar 

  5. Leahy JG, Byrne AM, Olsen RH (1996) Comparison of factors influencing trichloroethylene degradation by toluene-oxidizing bacteria. Appl Environ Microbiol 62:825–833

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Zuniga A, Poupin MJ, Donoso R, Ledger T, Guiliani N, Gutierrez RA, Gonzalez B (2013) Quorum sensing and indole-3-acetic acid degradation play a role in colonization and plant growth promotion of Arabidopsis thaliana by Burkholderia phytofirmans PsJN. Mol Plant Microbe Interact 26:546–553

    Article  CAS  PubMed  Google Scholar 

  7. Bernabeu PR, Pistorio M, Torres-Tejerizo G, Estrada-De los Santos P, Galar ML, Boiardi JL, Luna MF (2015) Colonization and plant growth-promotion of tomato by Burkholderia tropica. Sci Hortic 191:113–120

    Article  Google Scholar 

  8. Song D, Chen G, Liu S, Khaskheli MA, Wu L (2019) Complete genome sequence of Burkholderia sp. JP2-270, a rhizosphere isolate of rice with antifungal activity against Rhizoctonia solani. Microb Pathog 127:1–6

    Article  CAS  PubMed  Google Scholar 

  9. Kim H, Ok Rim S, Bae H (2019) Antimicrobial potential of metabolites extracted from ginseng bacterial endophyte Burkholderia stabilis against ginseng pathogens. Biol Control 128:24–30

    Article  CAS  Google Scholar 

  10. Darling P, Chan M, Cox AD, Sokol PA (1998) Siderophore production by cystic fibrosis isolates of Burkholderia cepacia. Infect Immun 66:874–877

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Köthe M, Antl M, Huber B, Stoecker K, Ebrecht D, Steinmetz I, Eberl L (2003) Killing of Caenorhabditis elegans by Burkholderia cepacia is controlled by the cep quorum-sensing system. Cell Microbiol 5:343–351

    Article  PubMed  Google Scholar 

  12. Lu SE, Novak J, Austin FW, Gu G, Ellis D, Kirk M, Wilson-Stanford S, Tonelli M, Smith L (2009) Occidiofungin, a unique antifungal glycopeptide produced by a strain of Burkholderia contaminans. Biochemistry 48:8312–8321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Vellasamy KM, Vasu C, Puthucheary SD, Vadivelu J (2009) Comparative analysis of extracellular enzymes and virulence exhibited by Burkholderia pseudomallei from different sources. Microb Pathog 47:111–117

    Article  CAS  PubMed  Google Scholar 

  14. Chiarini L, Bevivino A, Dalmastri C, Tabacchioni S, Visca P (2006) Burkholderia cepacia complex species: health hazards and biotechnological potential. Trends Microbiol 14:277–286

    Article  CAS  PubMed  Google Scholar 

  15. Kim S, Lowman S, Hou G, Nowak J, Flinn B, Mei C (2012) Growth promotion and colonization of switchgrass (Panicum virgatum) cv. Alamo by bacterial endophyte Burkholderia phytofirmans strain PsJN. Biotechnol Biofuels 5:37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Azura Azami N, Ira Aryani W, Aik-Hong T, Amirul AA (2019) Purification and characterization of new bio-plastic degrading enzyme from Burkholderia cepacia DP1. Protein Expr Purif 155:35–42

    Article  CAS  PubMed  Google Scholar 

  17. Abe M, Nakazawa T (1994) Characterization of hemolytic and antifungal substance, cepalycin, from Pseudomonas cepacia. Microbiol Immunol 38:1–9

    Article  CAS  PubMed  Google Scholar 

  18. Jayaswal R, Fernandez M, Upadhyay R, Visintin L, Kurz M, Webb J, Rinehart K (1993) Antagonism of Pseudomonas cepacia against phytopathogenic fungi. Curr Microbiol 26:17–22

    Article  CAS  PubMed  Google Scholar 

  19. Meyers E, Bisacchi G, Dean L, Liu W, Minassian B, Slusarchyk D, Sykes R, Tanaka S, Trejo W (1987) Xylocandin: a new complex of antifungal peptides. I. Taxonomy, isolation and biological activity. J Antibiot 40:1515–1519

    Article  CAS  PubMed  Google Scholar 

  20. Wang XQ, Liu AX, Guerrero A, Liu J, Yu XQ, Deng P, Ma L, Baird SM, Smith L, Li XD, Lu SE (2016) Occidiofungin is an important component responsible for the antifungal activity of Burkholderia pyrrocinia strain Lyc2. J Appl Microbiol 120:607–618

    Article  CAS  PubMed  Google Scholar 

  21. Yu XQ, Xi LJ, Liu YG, Li GW, Lan YF, Zhu XP, Li XD (2007) Physio-biochemical characterization and molecular identification of Burkholderia cepacia isolate Lyc2 as a PGPR to cotton seedlings. Acta Phytopathol Sinica 37:426–432

    Google Scholar 

  22. Wang X-Q, Showmaker KC, Yu X-Q, Bi T, Hsu C-Y, Baird SM, Peterson DG, Li X-D, Lu S-E (2014) Draft genome sequence of Burkholderia pyrrocinia Lyc2, a biological control strain that can suppress multiple plant microbial pathogens. Genome Announc 2:e00991-14

    Article  PubMed  PubMed Central  Google Scholar 

  23. Vidaver AK (1967) Synthetic and complex media for the rapid detection of fluorescence of phytopathogenic pseudomonads: effect of the carbon source. Appl Microbiol 15:1523–1524

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Gross D, DeVay J (1977) Population dynamics and pathogenesis of Pseudomonas syringae in maize and cowpea in relation to the in vitro production of syringomycin. Phytopathology 67:475–483

    Article  Google Scholar 

  25. Solovyev V, Salamov A (2011) Automatic annotation of microbial genomes and metagenomic sequences. In: Li RW (ed) Metagenomics and its applications in agriculture, biomedicine and environmental studies. Nova Science Publishers, Hauppauge, pp 61–68

    Google Scholar 

  26. Hall T (2004) BioEdit version 7.0. 0. Distributed by the author, http://www.mbio.ncsu.edu/BioEdit/bioedit.html

  27. Lefebre MD, Valvano MA (2002) Construction and evaluation of plasmid vectors optimized for constitutive and regulated gene expression in Burkholderia cepacia complex isolates. Appl Environ Microbiol 68:5956–5964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Baysse C, Matthijs S, Pattery T, Cornelis P (2001) Impact of mutations in hemA and hemH genes on pyoverdine production by Pseudomonas fluorescens ATCC17400. FEMS Microbiol Lett 205:57–63

    Article  CAS  PubMed  Google Scholar 

  29. Xu J, Deng P, Showmaker KC, Wang H, Baird SM, Lu SE (2014) The pqqC gene is essential for antifungal activity of Pseudomonas kilonensis JX22 against Fusarium oxysporum f. sp. lycopersici. FEMS Microbiol Lett 353:98–105

    Article  CAS  PubMed  Google Scholar 

  30. Gu G, Smith L, Liu A, Lu SE (2011) Genetic and biochemical map for the biosynthesis of occidiofungin, an antifungal produced by Burkholderia contaminans strain MS14. Appl Environ Microbiol 77:6189–6198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Forman HJ, Dickinson DA (2003) Oxidative signaling and glutathione synthesis. BioFactors 17:1–12

    Article  CAS  PubMed  Google Scholar 

  32. Wade DS, Calfee MW, Rocha ER, Ling EA, Engstrom E, Coleman JP, Pesci EC (2005) Regulation of Pseudomonas quinolone signal synthesis in Pseudomonas aeruginosa. J Bacteriol 187:4372–4380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Almar M, Otero L, Santos C, Gallego JG (1998) Liver glutathione content and glutathione-dependent enzymes of two species of freshwater fish as bioindicators of chemical pollution. J Environ Sci Health Part B 33:769–783

    Article  CAS  Google Scholar 

  34. Sharma A, Paul A, Parida S, Pattanayak S, Mohapatra A, Rajesh Kumar P, Sahoo MK, Sundaray JK, Sahoo PK (2018) Dynamics of expression of antibacterial and antioxidant defence genes in Indian major carp, Labeo rohita in response to Aeromonas hydrophila infection. Microb Pathog 125:108–115

    Article  CAS  PubMed  Google Scholar 

  35. Wang Y, Li H, Li T, Du X, Zhang X, Guo T, Kong J (2019) Glutathione biosynthesis is essential for antioxidant and anti-inflammatory effects of Streptococcus thermophilus. Int Dairy J 89:31–36

    Article  CAS  Google Scholar 

  36. Pallardó FV, Markovic J, García JL, Viña J (2009) Role of nuclear glutathione as a key regulator of cell proliferation. Mol Aspects Med 30:77–85

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by grants from Shandong Provincial National Science Foundation, China (ZR2018BC037) and Science Foundation for Young Scholars of Tobacco Research Institute of Chinese Academy of Agricultural Sciences (2017B03) and China National Tobacco Corporation Key Technology Project (SCYC201703, 110201601026(LS-06)).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dexin Chen.

Ethics declarations

Conflict of interest

No conflict of interest declared.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Chen, D., Wang, J. et al. Cloning and Analysis of Genes Controlling Antibacterial Activities of Burkholderia pyrrocinia Strain Lyc2. Curr Microbiol 76, 1003–1009 (2019). https://doi.org/10.1007/s00284-019-01690-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-019-01690-z

Navigation