Skip to main content

Advertisement

Log in

Different Virulence Capabilities and ompA Expressions in ST2 and ST513 of Multidrug-Resistant Acinetobacter baumannii

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Successful clones of Acinetobacter baumannii cause a variety of nosocomial infections through serum resistance, biofilm formation, and antimicrobial resistance as virulence capabilities. Fifty clinical isolates of multidrug-resistant (MDR) A. baumannii were analyzed for clonal relatedness, serum resistance, biofilm formation, and in vivo assays. Furthermore, some virulence genes, sequence variation of ompA, and its expression were studied. The MLST (multilocus sequence typing) results showed that there were three sequence types among MDR isolates including ST2 (64%, 32/50), ST513 (30%, 15/50), and ST1 (6%, 3/50). The data showed that the clinical isolates recovered from sputum had mostly high biofilm-formation capacity, while isolates recovered from host interior fluids had high serum resistance. The results of PCR assays and in silico analysis represented patterns of virulence genes and even ompA sequence variations among MDR isolates which were clonally dependent. While quantitative reverse transcription-polymerase chain reaction (qRT-PCR) analysis showed that bacteremia-producing strains in C57/BL6 mice significantly overexpress ompA (P < 0.05) and have a direct relation with the level of IL-6 in bloodstream of mice. Moreover, the expressions of ompA among indistinguishable clones (ST2 or ST513) were clonally independent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Durante-Mangoni E, Zarrilli R (2011) Global spread of drug-resistant Acinetobacter baumannii: molecular epidemiology and management of antimicrobial resistance. Future Microbiol 6:407–422

    Article  PubMed  Google Scholar 

  2. Harding CM, Hennon SW, Feldman MF (2018) Uncovering the mechanisms of Acinetobacter baumannii virulence. Nat Rev Microbiol 16:91

    Article  CAS  PubMed  Google Scholar 

  3. Algburi A, Comito N, Kashtanov D et al (2017) Control of biofilm formation: antibiotics and beyond. Appl Environ Microbiol 17:83

    Google Scholar 

  4. Brossard KA, Campagnari AA (2012) The Acinetobacter baumannii biofilm-associated protein plays a role in adherence to human epithelial cells. Infect Immun 80:228–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lee CR, Lee JH, Park M et al (2017) Biology of Acinetobacter baumannii: pathogenesis, antibiotic resistance mechanisms, and prospective treatment options. Front Cell Infect Microbiol 7:55

    PubMed  PubMed Central  Google Scholar 

  6. McConnell MJ, Actis L, Pachón J (2013) Acinetobacter baumannii: human infections, factors contributing to pathogenesis and animal models. FEMS Microbiol Rev 37:130–155

    Article  CAS  PubMed  Google Scholar 

  7. Kim SW, Choi CH, Moon DC et al (2009) Serum resistance of Acinetobacter baumannii through the binding of factor H to outer membrane proteins. FEMS Microbiol Lett 301:224–231

    Article  CAS  PubMed  Google Scholar 

  8. Bentancor LV, Camacho-Peiro A, Bozkurt-Guzel C et al (2012) Identification of Ata, a multifunctional trimeric autotransporter of Acinetobacter baumannii. J Bacteriol 194:3950–3960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lee HW, Koh YM, Kim J et al (2008) Capacity of multidrug-resistant clinical isolates of Acinetobacter baumannii to form biofilm and adhere to epithelial cell surfaces. Clin Microbiol Infect 14:49–54

    Article  CAS  PubMed  Google Scholar 

  10. Darwish SA, Rasooli I, Mousavi SG (2017) Filamentous hemagglutinin adhesin FhaB limits A. baumannii biofilm formation. Front Biosci 9:266–275

    Article  Google Scholar 

  11. Smani Y, Docobo-Pérez F, López-Rojas R et al (2012) Platelet-activating factor receptor initiates contact of Acinetobacter baumannii expressing phosphorylcholine with host cells. J Biol Chem 287:26901–26910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Mirshekar M, Shahcheraghi F, Azizi O et al (2018) Diversity of class 1 integrons, and disruption of carO and dacD by insertion sequences among Acinetobacter baumannii isolates in Tehran, Iran. Microb Drug Resist 24:359–366

    Article  CAS  PubMed  Google Scholar 

  13. Antunes LC, Imperi F, Carattoli A et al (2011) Deciphering the multifactorial nature of Acinetobacter baumannii pathogenicity. PLoS ONE 6:e22674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Badmasti F, Ajdary S, Bouzari S et al (2015) Immunological evaluation of OMV (PagL) + Bap (1-487aa) and AbOmpA (8-346aa) + Bap (1-487aa) as vaccine candidates against Acinetobacter baumannii sepsis infection. Mol Immunol 67:552–558

    Article  CAS  PubMed  Google Scholar 

  15. Badmasti F, Siadat SD, Bouzari S et al (2015) Molecular detection of genes related to biofilm formation in multidrug-resistant Acinetobacter baumannii isolated from clinical settings. J Med Microbiol 64:559–564

    Article  CAS  PubMed  Google Scholar 

  16. Azizi O, Shahcheraghi F, Salimizand H et al (2016) Molecular analysis and expression of bap gene in biofilm-forming multi-drug-resistant Acinetobacter baumannii. Rep Biochem Mol Biol 5:62–72

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Harris G, KuoLee R, Xu HH et al (2017) Mouse models of Acinetobacter baumannii infection. Curr Protoc Microbiol 46(1):6G-3

    Article  Google Scholar 

  18. Aziz RK, Kansal R, Abdeltawab NF et al (2007) Susceptibility to severe Streptococcal sepsis: use of a large set of isogenic mouse lines to study genetic and environmental factors. Genes Immun 8:404–415

    Article  CAS  PubMed  Google Scholar 

  19. Noto MJ, Boyd KL, Burns WJ et al (2015) Toll-like receptor 9 contributes to defense against Acinetobacter baumannii infection. Infect Immun 83:4134–4141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kröger C, Kary SC, Schauer K et al (2016) Genetic regulation of virulence and antibiotic resistance in Acinetobacter baumannii. Genes 8:12

    Article  CAS  PubMed Central  Google Scholar 

  21. Hojabri Z, Pajand O, Bonura C et al (2014) Molecular epidemiology of Acinetobacter baumannii in Iran: endemic and epidemic spread of multiresistant isolates. J Antimicrob Chemother 69:2383–2387

    Article  CAS  PubMed  Google Scholar 

  22. Eijkelkamp BA, Stroeher UH, Hassan KA et al (2014) Comparative analysis of surface-exposed virulence factors of Acinetobacter baumannii. BMC Genom 15:1020

    Article  CAS  Google Scholar 

  23. Mortensen BL, Skaar EP (2012) Host–microbe interactions that shape the pathogenesis of Acinetobacter baumannii infection. Cell Microbiol 14:1336–1344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Buras JA, Holzmann B, Sitkovsky M (2005) Model organisms: animal models of sepsis: setting the stage. Nat Rev Drug Discov 4:854

    Article  CAS  PubMed  Google Scholar 

  25. Kim J, Lee JY, Lee H et al (2017) Microbiological features and clinical impact of the type VI secretion system (T6SS) in Acinetobacter baumannii isolates causing bacteremia. Virulence 8:1378–1389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wright MS, Jacobs MR, Bonomo RA et al (2017) Transcriptome remodeling of Acinetobacter baumannii during infection and treatment. MBio 8:e02193-16

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the personnel in the Bacteriology Department of the Pasture Institute of Iran for their help. This research was supported by the Pasture Institute of Iran under Grant No. B-0137.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Omid Azizi or Farzad Badmasti.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shirazi, A.S., Shafiei, M., Solgi, H. et al. Different Virulence Capabilities and ompA Expressions in ST2 and ST513 of Multidrug-Resistant Acinetobacter baumannii. Curr Microbiol 76, 723–731 (2019). https://doi.org/10.1007/s00284-019-01686-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-019-01686-9

Navigation