Skip to main content
Log in

Genome Analysis of Carbaryl-Degrading Strain Pseudomonas putida XWY-1

  • Review Article
  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Carbaryl was a widely used pesticide in the agriculture industry. The toxicity against non-target organisms and the environmental pollution it caused became the focus of public concern. However, the microbial mechanism of carbaryl degradation was not fully investigated. In the study, we reported the complete genome of the carbaryl-degrading Pseudomonas putida strain XWY-1, which consists of a chromosome (5.9 Mbp) and a plasmid (0.4 Mbp). The carbaryl degradation genes are located on the plasmid. The study on the genome will facilitate to further elucidate the carbaryl degradation and advance the potential biotechnological applications of P. putida strain XWY-1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Zylstra G, McCombie W, Gibson D, Finette B (1988) Toluene degradation by Pseudomonas putida F1: genetic organization of the tod operon. Appl Environ Microbiol 54(6):1498–1503

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Abuhamed T, Bayraktar E, Mehmetoğlu T, Mehmetoğlu Ü (2004) Kinetics model for growth of Pseudomonas putida F1 during benzene, toluene and phenol biodegradation. Process Biochem 39(8):983–988

    Article  CAS  Google Scholar 

  3. Swetha VP, Phale PS (2005) Metabolism of carbaryl via 1, 2-dihydroxynaphthalene by soil isolates Pseudomonas sp. strains C4, C5, and C6. Appl Environ Microbiol 71(10):5951–5956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hayatsu M, Tago K, Fukui M, Sekiya E (2005) Ecology of pesticide-degrading bacteria: degradation of organophosphorus and carbamate insecticides. ACS Publications, pp 82–91

  5. Zhu S, Qiu J, Wang H, Wang X, Jin W, Zhang Y, Zhang C, Hu G, He J, Hong Q (2018) Cloning and expression of the carbaryl hydrolase gene mcbA and the identification of a key amino acid necessary for carbaryl hydrolysis. J Hazard Mater 344:1126–1135

    Article  CAS  PubMed  Google Scholar 

  6. Schirmer M, Ijaz UZ, D’Amore R, Hall N, Sloan WT, Quince C (2015) Insight into biases and sequencing errors for amplicon sequencing with the Illumina MiSeq platform. Nucleic Acids Res 43(6):e37–e37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Rhoads A, Au KF (2015) PacBio sequencing and its applications. Genomics Proteomics Bioinform 13(5):278–289

    Article  Google Scholar 

  8. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, Formsma K, Gerdes S, Glass EM, Kubal M (2008) The RAST Server: rapid annotations using subsystems technology. BMC Genomics 9(1):75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Cros M-J, De Monte A, Mariette J, Bardou P, Grenier-Boley B, Gautheret D, Touzet H, Gaspin C (2011) RNAspace.org: an integrated environment for the prediction, annotation, and analysis of ncRNA. RNA 17(11):1947–1956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Trivedi VD, Jangir PK, Sharma R, Phale PS (2016) Insights into functional and evolutionary analysis of carbaryl metabolic pathway from Pseudomonas sp. strain C5pp. Sci Rep 6:38430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Singh R, Trivedi VD, Phale PS (2013) Metabolic regulation and chromosomal localization of carbaryl degradation pathway in Pseudomonas sp. strains C4, C5 and C6. Arch Microbiol 195(8):521–535

    Article  CAS  PubMed  Google Scholar 

  12. Trivedi VD, Jangir PK, Sharma R (2016) Draft genome sequence of carbaryl-degrading soil isolate Pseudomonas sp. strain C5pp. Genome Announc 4(3):e00526–e00516

    Article  PubMed  PubMed Central  Google Scholar 

  13. Fernández M, Niqui-Arroyo JL, Conde S, Ramos JL, Duque E (2012) Enhanced tolerance to naphthalene and enhanced rhizoremediation performance for Pseudomonas putida KT2440 via the NAH7 catabolic plasmid. Appl Environ Microbiol 78(15):5104–5110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Samanta SK, Singh OV, Jain RK (2002) Polycyclic aromatic hydrocarbons: environmental pollution and bioremediation. Trends Biotechnol 20(6):243–248

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (31670112, 31870092) and the National Key R&D Program of China (2017YFD0800702).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiguo Qiu.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 2062 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, S., Wang, H., Jiang, W. et al. Genome Analysis of Carbaryl-Degrading Strain Pseudomonas putida XWY-1. Curr Microbiol 76, 927–929 (2019). https://doi.org/10.1007/s00284-019-01637-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-019-01637-4

Navigation