Skip to main content

Advertisement

Log in

Complete Genome Sequence of Massilia oculi sp. nov. CCUG 43427T (=DSM 26321T), the Type Strain of M. oculi, and Comparison with Genome Sequences of Other Massilia Strains

  • Letter to the Editor
  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Massilia oculi sp. nov. of type strain CCUG 43427T is a Gram-negative, rod-shaped, nonspore-forming bacterium, which was recently isolated from the eye of a patient suffering from endophthalmitis and was described as novel species in Massilia genus. In this study, we present the complete genome sequence of this strain by using Pacbio SMRT cell platform and compare this sequence with the genomes of 30 Massilia representative strains. Also, a comprehensive search was conducted for genes and proteins involved in antibiotic resistance and pathogenicity. The genome of CCUG 43427T is 5,844,653 bp with 65.55% GC content. This genome contains four prophages and four genomic islands (GIs). The cobalt/zinc/cadmium transporter locus CzcABCD is included in these GIs. This GI was predicted to play important role in bacterial heavy-metal tolerance. The in silico genome analysis also revealed that this strain contains a lot of antibiotic resistance and pathogenicity related genes. This result suggested that this strain may has evolved a wide arsenal of weapons for pathogenicity and survival. Genome comparison among CCUG 43427T and other 30 Massilia strains revealed that more than 400 genes are unique in CCUG 43427T. Among these, one gene cluster, which was annotated to be important for LOS biosynthesis, catalytic mechanism and the substrate specificity of the enzyme, was predicted to be horizontally transferred by using phylogenies and biased GC content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  1. Kämpfer P, Lodders N, Martin K, Falsen E (2012) Massilia oculi sp. nov., isolated from a human clinical specimen. Int J Syst Evol Microbiol 62(2):364–369

    Article  PubMed  Google Scholar 

  2. Gudeta DD, Bortolaia V, Amos G, Wellington EM, Brandt KK, Poirel L, Nielsen JB, Westh H, Guardabassi L (2016) The soil microbiota harbors a diversity of carbapenem-hydrolyzing β-lactamases of potential clinical relevance. Antimicrob Agents Chemother 60(1):151–160

    Article  CAS  PubMed  Google Scholar 

  3. Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ, Disz T, Edwards RA, Gerdes S, Parrello B, Shukla M (2014) The SEED and the rapid annotation of microbial genomes using Subsystems Technology (RAST). Nucleic Acids Res 42(D1):D206–D214

    Article  CAS  PubMed  Google Scholar 

  4. Tatusov RL, Fedorova ND, Jackson JD, Jacobs AR, Kiryutin B, Koonin EV, Krylov DM, Mazumder R, Mekhedov SL, Nikolskaya AN (2003) The COG database: an updated version includes eukaryotes. BMC Bioinform 4(1):41

    Article  Google Scholar 

  5. Kanehisa M, Goto S (2000) KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28(1):27–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Liu B, Pop M (2009) ARDB—antibiotic resistance genes database. Nucleic Acids Res 37(suppl 1):D443–D447

    Article  CAS  PubMed  Google Scholar 

  7. Langille MGI, Brinkman FSL (2009) IslandViewer: an integrated interface for computational identification and visualization of genomic islands. Bioinformatics 25(5):664–665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chen L, Zheng D, Liu B, Yang J, Jin Q (2016) VFDB 2016: hierarchical and refined dataset for big data analysis—10 years on. Nucleic Acids Res 44(D1):D694–D697

    Article  CAS  PubMed  Google Scholar 

  9. Zhou Y, Liang Y, Lynch KH, Dennis JJ, Wishart DS (2011) PHAST: a fast phage search tool. Nucleic Acids Res 39(suppl_2):W347–W352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Grant JR, Arantes AS, Stothard P (2012) Comparing thousands of circular genomes using the CGView Comparison Tool. BMC Genom 13(1):202

    Article  CAS  Google Scholar 

  11. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32(5):1792–1797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T (2009) trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25(15):1972–1973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kalyaanamoorthy S, Minh BQ, Wong TK, von Haeseler A, Jermiin LS (2017) ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods 14(6):587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22(21):2688–2690

    Article  CAS  PubMed  Google Scholar 

  15. Schmidt HA, Strimmer K, Vingron M, von Haeseler A (2002) TREE-PUZZLE: maximum likelihood phylogenetic analysis using quartets and parallel computing. Bioinformatics 18(3):502–504

    Article  CAS  PubMed  Google Scholar 

  16. Zhu B, Zhou S, Lou M, Zhu J, Li B, Xie G, Jin G, De Mot R (2011) Characterization and inference of gene gain/loss along Burkholderia evolutionary history. Evol Bioinform 7:191

    Article  Google Scholar 

  17. Gemmell MR, Berry S, Mukhopadhya I, Hansen R, Nielsen HL, Bajaj-Elliott M, Nielsen H, Hold GL (2018) Comparative genomics of Campylobacter concisus: analysis of clinical strains reveals genome diversity and pathogenic potential. Emerg Microb Infect 7(1):116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Huang Y-T, Tang Y-Y, Cheng J-F, Wu Z-Y, Mao Y-C, Liu P-Y (2018) Genome analysis of multidrug-resistant Shewanella algae isolated from human soft tissue sample. Front Pharmacol 9:419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bouzat JL, Hoostal MJ (2013) Evolutionary analysis and lateral gene transfer of two-component regulatory systems associated with heavy-metal tolerance in bacteria. J Mol Evol 76(5):267–279

    Article  CAS  PubMed  Google Scholar 

  20. Nies DH (1992) CzcR and CzcD, gene products affecting regulation of resistance to cobalt, zinc, and cadmium (czc system) in Alcaligenes eutrophus. J Bacteriol 174(24):8102–8110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Nies DH, Nies A, Chu L, Silver S (1989) Expression and nucleotide sequence of a plasmid-determined divalent cation efflux system from Alcaligenes eutrophus. Proc Natl Acad Sci USA 86(19):7351–7355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Williams CL, Neu HM, Gilbreath JJ, Michel SL, Zurawski DV, Merrell DS (2016) Copper resistance of the emerging pathogen Acinetobacter baumannii. Appl Environ Microbiol 82(20):6174–6188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Stanhope MJ, Lupas A, Italia MJ, Koretke KK, Volker C, Brown JR (2001) Phylogenetic analyses do not support horizontal gene transfers from bacteria to vertebrates. Nature 411(6840):940

    Article  CAS  PubMed  Google Scholar 

  24. Parkhill J, Wren B, Mungall K, Ketley J, Churcher C, Basham D, Chillingworth T, Davies R, Feltwell T, Holroyd S (2000) The genome sequence of the food-borne pathogen Campylobacter jejuni reveals hypervariable sequences. Nature 403(6770):665

    Article  CAS  PubMed  Google Scholar 

  25. Deli A, Koutsioulis D, Fadouloglou VE, Spiliotopoulou P, Balomenou S, Arnaouteli S, Tzanodaskalaki M, Mavromatis K, Kokkinidis M, Bouriotis V (2010) LmbE proteins from Bacillus cereus are de-N-acetylases with broad substrate specificity and are highly similar to proteins in Bacillus anthracis. FEBS J 277(13):2740–2753

    Article  CAS  PubMed  Google Scholar 

  26. La Scola B, Birtles RJ, Mallet M-N, Raoult D (1998) Massilia timonae gen. nov., sp. nov., isolated from blood of an immunocompromised patient with cerebellar lesions. J Clin Microbiol 36(10):2847–2852

    PubMed  PubMed Central  Google Scholar 

  27. Zhang Y-Q, Li W-J, Zhang K-Y, Tian X-P, Jiang Y, Xu L-H, Jiang C-L, Lai R (2006) Massilia dura sp. nov. Massilia albidiflava sp. nov., Massilia plicata sp. nov. and Massilia lutea sp. nov., isolated from soils in China. Int J Syst Evol Microbiol 56(2):459–463

    Article  CAS  PubMed  Google Scholar 

  28. Ofek M, Hadar Y, Minz D (2012) Ecology of root colonizing Massilia (Oxalobacteraceae). PLoS ONE 7(7):e40117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by National Key R&D Program of China (2017YFD0201108, 2018YFD0201202), Zhejiang National Natural Science Foundation of China (LY17C010006) and State Key Laboratory for Biology of Plant Diseases and Insect Pests (SKLOF201802).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jian Shen or Bo Zhu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 10 KB)

Supplementary material 2 (XLSX 16 KB)

Supplementary material 3 (XLSX 10 KB)

Supplementary material 4 (XLSX 9 KB)

Supplementary material 5 (XLSX 27 KB)

Fig. S1

. Circular map of the chromosome of M. oculi CCUG 43427T and other fully sequenced Massilia genomes. The tracks from the outside to inside: M. oculi CCUG 43427T, M. timonae NEU, M. timonae CCUG 45783, Massilia sp. KIM, M. niastensis DSM 21313, Massilia sp. LC238, M. alkalitolerans DSM 17462, M. yuzhufengensis, Massilia sp. BSC265, Massilia sp. WG5, Massilia sp. Root133, Massilia sp. Leaf139, Massilia sp. JS1662, Massilia sp. PDC64, Massilia sp. Root1485, Massilia sp. WF1, M. putida 6NM-7T, Massilia sp. Root335, M. phosphatilytica, Massilia sp. 9096, M. eurypsychrophila, M. namucuonensis, Massilia sp. Root418, Massilia sp. Root351, M. armeniaca ZMN-3, Massilia sp. GV045, Massilia sp. GV016, M. psychrophilum B2, M. glaciei, Massilia sp. NR 4-1, Massilia sp. CF038, GCContent and GC Skew. (JPG 4343 KB)

Fig. S2

. Rooted phylogenomic tree of M. oculi CCUG 43427T and other Massilia genomes by using single-copy-gene concatenated method. The tree shown here was calculated by Maximum Likelihood (ML) algorithm plus LG+F+R8 model. Numbers at nodes indicate percentages of occurrence in 1000 bootstrapped trees; only values greater than 50% are shown. Bar, 0.01 substitutions per site. (JPG 2913 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, W., Wang, S., Shen, J. et al. Complete Genome Sequence of Massilia oculi sp. nov. CCUG 43427T (=DSM 26321T), the Type Strain of M. oculi, and Comparison with Genome Sequences of Other Massilia Strains. Curr Microbiol 76, 1082–1086 (2019). https://doi.org/10.1007/s00284-018-1597-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-018-1597-7

Navigation