Skip to main content
Log in

Comparative Study on Whole Genome Sequences of Aspergillus terreus (Soil Fungus) and Diaporthe ampelina (Endophytic Fungus) with Reference to Lovastatin Production

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Lovastatin is a competitive inhibitor of the enzyme hydroxymethyl glutaryl coenzyme A reductase (HMGR) in cholesterol biosynthetic pathway and hence used in the treatment of hyperlipidemia. In a previous study, we report a tropical soil isolate, Aspergillus terreus (KM017963), which produces ample amount of lovastatin than its counterpart that are endophytic in origin. Bioinformatic analysis of whole genome sequence of A. terreus (AH007774.1), a soil isolate revealed the presence of gene cluster (AF141924.1 & AF141925.1) responsible for lovastatin production, whereas endophytic fungi including a strain of A. terreus showed no homology with the lovastatin gene cluster. The molecular study was also carried out targeting PCR amplification of the two important genes, lovE (a regulatory gene) and lovF (transcriptional regulatory factor) in genomic and c-DNA of soil and endophytic fungi. Expression of the two genes was successful in A. terreus (KM017963), whereas the same was not achieved in endophytic fungi. To further validate our above findings, in the present study, the whole genome sequencing of A. terreus and a selected endophytic fungus, Diaporthe ampelina (Phomopsis) was performed. Lovastatin gene cluster, when aligned on the consensus sequence of both genomes, the entire lovastatin gene cluster was detected in a single scaffold (1.16) of A.terreus genome. On the contrary, there was a complete absence of lovastatin gene cluster in the genome of D. ampelina (an endophyte). The probable reasons for the absence of lovastatin gene cluster in endophytic fungi are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Askenazi M, Driggers EM, Holtzman DA, Norman TC, Iverson S, Zimmer DP, Feibelman TP (2003) Integrating transcriptional and metabolite profiles to direct the engineering of lovastatin-producing fungal strains. Nat Biotechnol 21(2):150–156

    Article  CAS  PubMed  Google Scholar 

  2. Barrios-González J, Baños JG, Covarrubias AA, Garay-Arroyo A (2008) Lovastatin biosynthetic genes of Aspergillus terreus are expressed differentially in solid-state and in liquid submerged fermentation. Appl Microbiol Biotechnol 79:179–186

    Article  PubMed  Google Scholar 

  3. Bhargavi SD, Praveen VK, Savitha J (2014) Bioinformatic comparative analysis of lovastatin gene cluster in endophytic fungi and a soil fungus, Aspergillus terreus. MOJ Proteom Bioinform 1(4):1–4

    Google Scholar 

  4. Bhargavi SD, Praveen VK, Savitha J (2015) Screening of selected soil and endophytic fungi for lovostatin biosynthetic genes lovE and lovF. J Microb Biochem Technol 7:334–337

    Google Scholar 

  5. Crowell DN, Salaz MS (1992) Inhibition of growth of cultured Tobacco cells at low concentrations of lovastatin is reversed by cytokinin. Plant Physiol 100:2090–2095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Gary S, Bryn D (2003) Bioprospecting for microbial endophytes and their natural products. Mol Boil Rev 67(4):491–502

    Article  Google Scholar 

  7. González BJ, Miranda RU (2010) Biotechnological production and applications of statins. Appl Microbiol Biotechnol 85(4):869–883

    Article  Google Scholar 

  8. Gulyamova TG, Ruzieva DM, Nasmetova SM, Sattarova RS, Lobanova KV, Abdulmyanova LA, Rasulova GA (2013) Lovastatin production by Aspergillus terreus in solid state and submerged fermentations. Int J Eng Sci Technol 5(3):19–24

    Google Scholar 

  9. Huang X, Li HM (2009) Cloning and bioinformatic analysis of lovastatin biosynthesis regulatory gene lovE. Chin Med J 122(15):1800–1805

    CAS  PubMed  Google Scholar 

  10. Javier BG, Roxana UM (2010) Biotechnological production and applications of statins. Appl Microbiol Biotechnol 85:869–883

    Article  Google Scholar 

  11. John CT, Elizabeth F, McElwain, Hans JB (1992) Convergent induction of osmotic stress-responses, abscisic acid, cytokinin, and the effects of NaCI. Plant Physiol 100:416–423

    Article  Google Scholar 

  12. Joseph LG, Michael SB (1990) Regulation of the mevalonate pathway. NPG 425–430

  13. Kawasaki ES (1990) Amplification of RNA. In: Innis MA, Gelfand DH, Sninsky JJ, White T (eds) JPCR protocols: a guide to methods and applications. Academic Press, Cambridge, pp 21–27

    Google Scholar 

  14. Kharwar RN, Mishra A, Gond SK, Stierle A, Stierle D (2011) Anticancer compounds derived from fungal endophytes: their importance and future challenges. Nat Prod Rep 28:1208–1228

    Article  CAS  PubMed  Google Scholar 

  15. Liu L, Xi Z, Davis CC (2015) Coalescent methods are robust to the simultaneous effects of long branches and incomplete lineage sorting. Mol Biol Evol 32:791–805

    Article  CAS  PubMed  Google Scholar 

  16. Mraz K, Malinova J, Mayer SP (2009) Micro RNA isolation and stability in stored RNA samples. Biochem Biophys Res Commun 390:1–4

    Article  CAS  PubMed  Google Scholar 

  17. Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15(3):473–497

    Article  CAS  Google Scholar 

  18. Oliver L, Andreas FR, Hur-Song C, Tong Z, Xun W, Peter BH, Wilhelm G, Markus (2002) Crosstalk between cytosolic and plastidial pathways of isoprenoid biosynthesis in Arabidopsis thaliana. Proc Natl Acad Sci USA 100(11):6866–6871

    Google Scholar 

  19. Parthasarathy R, Sathiyabama M (2015) Lovastatin-producing endophytic fungus isolated from a medicinal plant Solanum xanthocarpum. Nat Prod Res 29(24):2282–2286

    Article  CAS  PubMed  Google Scholar 

  20. Praveen VK, Bhargavi SD, Savitha J (2014) Endophytic fungi: a poor candidate for the production of lovastatin. Br Microbiol Res J 4(12):1511–1520

    Article  Google Scholar 

  21. Praveen VK, Bhargavi SD, Savitha J (2015) Lovastatin production by Aspergillus terreus (KM017963) in submerged and solid State Fermentation: a comparative study. Am J Pharm Health Res 3(7):117–126

    Google Scholar 

  22. Raghunath R, Radhakrishna A, Manikandan N, Nathiya K, Palaniswamy M (2012) Optimised production of lovastatin through solid state fermentation by endophytic fungi. Int J Pharma Biol Sci 3(3):562–570

    CAS  Google Scholar 

  23. Ravindra NK, Ashish M, Surendra KG, Andrea S, Donald S (2011) Anticancer compounds derived from fungal endophytes: their importance and future challenges. Nat Prod Rep 28:1208–1228

    Article  Google Scholar 

  24. Savitha J, Bhargavi SD, Praveen VK (2016) Complete genome sequence of soil fungus Aspergillus terreus (KM017963), a potent lovastatin producer. Genome Announc 4(3):e00491

    PubMed  PubMed Central  Google Scholar 

  25. Savitha J, Bhargavi SD, Praveen VK (2016) Complete Genome Sequence of the Endophytic Fungus Diaporthe (Phomopsis) ampelina. Genome Announc 4(3):e00477

    PubMed  PubMed Central  Google Scholar 

  26. Seenivasan A, Shubahgar S, Arvindan R, Viruthagiri T (2008) Microbial production and biomedical applications of lovastatin. Indian J Pharm Sci 70:701–709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Spatafora JW, Bushley KE (2015) Phylogenomics and evolution of secondary metabolism in plant-associated fungi. Curr Opin Plant Biol 26:37–44

    Article  CAS  PubMed  Google Scholar 

  28. Tatsuo K (2003) Biosynthesis of cytokinins. J Plant Res 116:233–239

    Article  Google Scholar 

  29. Upendra RS, Pratima K, Amiri ZR, Shwetha L, Ausim M (2013) Screening and molecular characterization of natural fungal isolates producing lovastatin. J Microb Biochem Technol 5(2):25–30

    Google Scholar 

  30. Wei Y, Lu L, Wenlong Z, Juan L, Jingyuan Y (2009) Comparison of RNA extraction methods applied to gene cloning of the taxol-producing fungi. Afr J Microbiol Res 3(10):632–636

    Google Scholar 

  31. Xie X, Tang Y (2007) Efficient synthesis of simvastatin by use of whole-cell biocatalysis. Appl Environ Microbiol 73(7):2054–2060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Young CA, Schardl CL, Panaccione DG, Florea S, Takach JE, Charlton ND, Moore N, Webb JS, Jaromczyk J (2015) Genetics, genomics and evolution of ergot alkaloid diversity. Toxins 7:1273–1302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhang YJ, Zhang S, Liu XZ, Wen HA, Wang M (2010) A simple method of genomic DNA extraction suitable for analysis of bulk fungal strains. Lett Appl Microbiol 51(1):114–118

    PubMed  Google Scholar 

  34. Zhiguo J, Eric AC (2000) Lovastatin inhibits a-Farnesene synthesis without affecting ethylene production during fruit ripening in ‘Golden Supreme’ apples. J Am Sochortm Sci 125(1):105–110

    Google Scholar 

Download references

Acknowledgements

This work was supported by the SERB, Govt. of India; [Grant Number-DST/SO/FNo.SERB.SR/SO/PS/046/2011]. Authors would also like to acknowledge Prof. T. S. Suryanarayanan, Director, Vivekananda Institute of Tropical Mycology (VINSTROM), A Unit of the Ramakrishna Mission Vidyapith, Chennai 600 004, India for providing few endophytic fungi for the present research work. We also would like to thank Eurofins Genomics, India, for sequencing and bioinformatics analysis of whole genome of both fungi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Savitha.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhargavi, S.D., Praveen, V.K., Anil Kumar, M. et al. Comparative Study on Whole Genome Sequences of Aspergillus terreus (Soil Fungus) and Diaporthe ampelina (Endophytic Fungus) with Reference to Lovastatin Production. Curr Microbiol 75, 84–91 (2018). https://doi.org/10.1007/s00284-017-1353-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-017-1353-4

Navigation