Skip to main content
Log in

The Role of Localized Acidity Generation in Microbially Influenced Corrosion

  • Review Article
  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Microbially influenced corrosion is of great industrial concern. Microbial coupling of metal oxidation to sulfate-, nitrate-, nitrite-, or CO2-reduction is proton-mediated, and some sulfate-reducing prokaryotes are capable of regulating extracellular pH. The analysis of the corrosive processes catalyzed by nitrate reducing bacteria and methanogenic archaea indicates that these microorganisms may be capable of regulating extracellular pH as well. It is proposed that nutrient limitation at metal–biofilm interfaces may induce activation of enzymatic proton-producing/proton-secreting functions in respiratory and methanogenic microorganisms to make them capable of using Fe0 as the electron donor. This can be further verified through experiments involving measurements of ion and gas concentrations at metal–biofilm interfaces, microscopy, and transcriptomics analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bockris JOM, Reddy AKN (1970) Modern electrochemistry. Plenum, New York

    Book  Google Scholar 

  2. Boopathy R, Daniels L (1991) Effect of pH on anaerobic mild steel corrosion by methanogenic bacteria. Appl Environ Microb 57:2104–2108

    CAS  Google Scholar 

  3. Cord-Ruwisch R (2000) Microbially influenced corrosion of steel. In: Lovley DR (ed) Environmental microbe–metal interactions. ASM Press, Washington, DC, pp 159–173

    Chapter  Google Scholar 

  4. Crolet J-L (1992) From biology and corrosion to biocorrosion. Oceanol Acta 15:87–94

    CAS  Google Scholar 

  5. Crolet J-L (2005) Microbial corrosion in the oil industry: a corrosionist’s view. In: Ollivier B, Magot M (eds) Petroleum Microbiology. ASM Press, Washington, DC, p 378

    Google Scholar 

  6. Daniels L, Belay N, Rajagopal BS, Weimer PJ (1987) Bacterial methanogenesis and growth from CO2 with elemental iron as the sole source of electrons. Science 237:509–511

    Article  CAS  PubMed  Google Scholar 

  7. Daumas S, Magot M, Crolet J-L (1993) Measurement of the net production of acidity by a sulphate-reducing bacterium: experimental checking of theoretical models of microbially influenced corrosion. Res Microbiol 144:327–332

    Article  CAS  PubMed  Google Scholar 

  8. Dinh HT, Kuever J, Mussmann M, Hassel AW, Stratmann M, Widdel F (2004) Iron corrosion by novel anaerobic microorganisms. Nature 427:829–832

    Article  CAS  PubMed  Google Scholar 

  9. Dronen K, Roalkvam I, Beeder J, Torsvik T, Steen IH, Skauge A, Liengen T (2014) Modeling of heavy nitrate corrosion in anaerobe aquifer injection water biofilm: a case study in a flow rig. Environ Sci Technol 48:8627–8635

    Article  PubMed  Google Scholar 

  10. Eklund GS (1974) Initiation of pitting at sulfide inclusions in stainless steel. J Electrochem Soc 121:467–473

    Article  CAS  Google Scholar 

  11. Enning D, Garrelfs J (2014) Corrosion of iron by sulfate-reducing bacteria: new views of an old problem. Appl Environ Microb 80:1226–1236

    Article  Google Scholar 

  12. Flemming H-C, Wingender J (2010) The biofilm matrix. Nat Rev Microbiol 8:623–633

    CAS  PubMed  Google Scholar 

  13. Gieg LM, Jack TR, Foght JM (2011) Biological souring and mitigation in oil reservoirs. Appl Microbiol Biotechnol 92:263–282

    Article  CAS  PubMed  Google Scholar 

  14. Gu T (2012) New understandings of biocorrosion mechanisms and their classifications. J Microb Biochem Technol 4:iii–vi

    Article  Google Scholar 

  15. Gu T (2014) Theoretical modeling of the possibility of acid producing bacteria causing fast pitting biocorrosion. J Microb Biochem Technol 6:68–74

    Article  Google Scholar 

  16. Gu T, Xu D (2013) Why are some microbes corrosive and some not? Corrosion (NACE International), paper #C2013–C0002336

  17. Hidalgo G, Burns A, Herz E, Hay AG, Houston PL, Wiesner U, Lion LW (2009) Functional tomographic fluorescence imaging of pH microenvironments in microbial biofilms by use of silica nanoparticle sensors. Appl Environ Microb 75:7426–7435

    Article  CAS  Google Scholar 

  18. Huang C-P, Wang H-W, Chiu P-C (1998) Nitrate reduction by metallic iron. Water Res 32:2257–2264

    Article  CAS  Google Scholar 

  19. Iino T, Ito K, Wakai S, Tsurumaru H, Ohkuma M, Harayama S (2015) Iron corrosion induced by nonhydrogenotrophic nitrate-reducing Prolixibacter sp. strain MIC1-1. Appl Environ Microb 81:1839–1846

    Article  Google Scholar 

  20. Kane RD, Cayard MS (1998) Roles of H2S in the behavior of engineering alloys: a review of literature and experience. Corrosion (NACE International), paper #274

  21. Kato S (2016) Microbial extracellular electron transfer and its relevance to iron corrosion. Microb Biotechnol 9:141–148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Keller KL, Rapp-Giles BJ, Semkiw ES, Porat I, Brown SD, Wall JD (2014) New model for electron flow for sulfate reduction in Desulfovibrio alaskensis G20. Appl Environ Microb 80:855–868

    Article  Google Scholar 

  23. Keller KL, Wall JD (2011) Genetics and molecular biology of the electron flow for sulfate respiration in Desulfovibrio. Front Microbiol 2:135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kim BH, Lim SS, Daud WR, Gadd GM, Chang IS (2015) The biocathode of microbial electrochemical systems and microbially-influenced corrosion. Bioresour Technol 190:390–401

    Google Scholar 

  25. Kip N, van Veen JA (2015) The dual role of microbes in corrosion. ISME J 9:542–551

    Article  CAS  PubMed  Google Scholar 

  26. Koch GH, Brongers MPH, Thompson NG, Virmani YP, Payer JH (2001) Corrosion costs and preventative strategies in the United States: Report by CC Technologies Laboratories to the Federal Highway Administration (Report FHWA-RD-01-156), Washington, DC. http://corrosionda.com/pdf/main.pdf. Accessed 11 Jul 2016

  27. Lin K-S, Chang N-B, Chuang T-D (2008) Fine structure characterization of zero-valent iron nanoparticles for decontamination of nitrites and nitrates in wastewater and groundwater. Sci Technol Adv Mat 9:025015

    Article  Google Scholar 

  28. Ma H, Cheng X, Li G, Chen S, Quan Z, Zhao S, Niu L (2000) The influence of hydrogen sulfide on corrosion of iron under different conditions. Corros Sci 42:1669–1683

    Article  CAS  Google Scholar 

  29. Marsili E, Baron DB, Shikhare ID, Coursolle D, Gralnick JA, Bond DR (2008) Shewanella secretes flavins that mediate extracellular electron transfer. Proc Natl Acad Sci USA 105:3968–3973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Mitchell P (1961) Coupling of phosphorylation to electron and hydrogen transfer by a chemi-osmotic type of mechanism. Nature 191:144–148

    Article  CAS  PubMed  Google Scholar 

  31. Mor ED, Scotto V, Mollica A (1980) Contribution to the discussion on localized corrosion of stainless steels in natural sea water. Werkst Korros 31:281–285

    Article  CAS  Google Scholar 

  32. Noguera DR, Brusseau GA, Rittmann BE, Stahl DA (1998) A unified model describing the role of hydrogen in the growth of Desulfovibrio vulgaris under different environmental conditions. Biotechnol Bioeng 59:732–746

    Article  CAS  PubMed  Google Scholar 

  33. Odom JM, Peck HD Jr (1984) Hydrogenase, electron transfer proteins, and energy coupling in the sulfate-reducing bacteria Desulfovibrio. Ann Rev Microbiol 38:551–592

    Article  CAS  Google Scholar 

  34. Olsson CA, Landolt D (2003) Passive films on stainless steels—chemistry, structure and growth. Electrochim Acta 48:1093–1104

    Article  CAS  Google Scholar 

  35. Pereira IAC, Ramos AR, Grein F, Marques M, da Silva SM, Venceslau SS (2011) A comparative genomic analysis of energy metabolism in sulfate reducing bacteria and archaea. Front Microbiol 2:69

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Pieulle L, Morelli X, Gallice P, Lojou E, Barbier P, Czjzek M et al (2005) The Type I/Type II cytochrome c 3 complex: an electron transfer link in the hydrogen-sulfate reduction pathway. J Mol Biol 354:73–90

    Article  CAS  PubMed  Google Scholar 

  37. Piron DL (1994) The electrochemistry of corrosion. NACE Press, Houston

    Google Scholar 

  38. Postgate JR (1953) Presence of cytochrome in an obligate anaerobe. Biochem J 56:xi–xii

    CAS  PubMed  Google Scholar 

  39. Reguera G, McCarthy KD, Mehta T, Nicoll JS, Tuominen MT, Lovley DR (2005) Extracellular electron transfer via microbial nanowires. Nature 435:1098–1101

    Article  CAS  PubMed  Google Scholar 

  40. Rosenbaum M, Aulenta F, Villano M, Angenent LT (2011) Cathodes as electron donors for microbial metabolism: which extracellular electron transfer mechanisms are involved? Bioresour Technol 102:324–333

    Article  CAS  PubMed  Google Scholar 

  41. Scotto V, Di Cintio R, Marcenaro G (1985) The influence of marine aerobic microbial film on stainless steel corrosion behaviour. Corros Sci 25:185–194

    Article  CAS  Google Scholar 

  42. Scotto V, Lai ME (1998) The ennoblement of stainless steels in seawater: a likely explanation coming from the field. Corros Sci 40:1007–1018

    Article  CAS  Google Scholar 

  43. Simon J, van Spanning RJM, Richardson DJ (2008) The organisation of proton motive and non-proton motive redox loops in prokaryotic respiratory systems. Biochim Biophys Acta 1777:1480–1490

    Article  CAS  PubMed  Google Scholar 

  44. Stewart PS (2003) Diffusion in biofilms. J Bacteriol 185:1485–1491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Stewart PS, Franklin MJ (2008) Physiological heterogeneity in biofilms. Nat Rev Microbiol 6:199–210

    Article  CAS  PubMed  Google Scholar 

  46. Tan SLJ, Webster RD (2012) Electrochemically induced chemically reversible proton-coupled electron transfer reactions of riboflavin (vitamin B2). J Am Chem Soc 134:5954–5964

    Article  CAS  PubMed  Google Scholar 

  47. Thauer RK, Kaster A-K, Goenrich M, Schick M, Hiromoto T, Shima S (2010) Hydrogenases from methanogenic archaea, nickel, a novel cofactor, and H2 storage. Annu Rev Biochem 79:507–536

    Article  CAS  PubMed  Google Scholar 

  48. Thauer RK, Stackebrandt E, Hamilton WA (2007) Energy metabolism and phylogenetic diversity of sulphate-reducing bacteria. In: Barton LL, Hamilton WA (eds) Sulphate-reducing bacteria: environmental and engineered systems. Cambridge University Press, Cambridge, pp 1–37

    Chapter  Google Scholar 

  49. Till BA, Weathers LJ, Alvarez PJJ (1998) Fe(0)-supported autotrophic denitrification. Environ Sci Technol 32:634–639

    Article  CAS  Google Scholar 

  50. Venzlaff H, Enning D, Srinivasan J, Mayrhofer KJJ, Hassel AW, Widdel F, Stratmann M (2013) Accelerated cathodic reaction in microbial corrosion of iron due to direct electron uptake by sulfate-reducing bacteria. Corros Sci 66:88–96

    Article  CAS  Google Scholar 

  51. Videla HA, Herrera LK (2005) Microbiologically influenced corrosion: looking to the future. Int Microbiol 8:169–180

    CAS  PubMed  Google Scholar 

  52. Videla HA, Herrera LK (2009) Understanding microbial inhibition of corrosion. A comprehensive overview. Int Biodeter Biodegr 63:896–900

    Article  CAS  Google Scholar 

  53. Von Wolzogen Kühr CAH, van der Vlugt LS (1934) The graphitization of cast iron as an electrobiochemical process in anaerobic soil. Water 18:147–165

    Google Scholar 

  54. Vroom JM, De Grauw KJ, Gerritsen HC, Bradshaw DJ, Marsh PD, Watson GK et al (1999) Depth penetration and detection of pH gradients in biofilms by two-photon excitation microscopy. Appl Environ Microb 65:3502–3511

    CAS  Google Scholar 

  55. Xu D, Gu T (2011) Bioenergetics explains when and why more severe MIC pitting by SRB can occur. Corrosion (NACE International), paper #11426

  56. Xu D, Gu T (2014) Carbon source starvation triggered more aggressive corrosion against carbon steel by the Desulfovibrio vulgaris biofilm. Int Biodeter Biodegr 91:74–81

    Article  CAS  Google Scholar 

  57. Xu D, Li Y, Gu T (2016) Mechanistic modeling of biocorrosion caused by biofilms of sulfate reducing bacteria and acid producing bacteria. Bioelectrochemistry 110:52–58

    Article  CAS  PubMed  Google Scholar 

  58. Xu D, Li Y, Song F, Gu T (2013) Laboratory investigation of microbiologically influenced corrosion of C1018 carbon steel by nitrate reducing bacterium Bacillus licheniformis. Corros Sci 77:385–390

    Article  CAS  Google Scholar 

  59. Zhang P, Xu D, Li Y, Yang K, Gu T (2015) Electron mediators accelerate the microbiologically influenced corrosion of 304 stainless steel by the Desulfovibrio vulgaris biofilm. Bioelectrochemistry 101:14–21

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuriy Kryachko.

Ethics declarations

Conflict of interest

The authors declare to have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kryachko, Y., Hemmingsen, S.M. The Role of Localized Acidity Generation in Microbially Influenced Corrosion. Curr Microbiol 74, 870–876 (2017). https://doi.org/10.1007/s00284-017-1254-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-017-1254-6

Keywords

Navigation