Skip to main content

Microorganisms Inducing Microbiologically Influenced Corrosion

  • Chapter
  • First Online:
Electron-Based Bioscience and Biotechnology

Abstract

Sulfate-reducing bacteria (SRB) are considered to be major causative microorganisms of MIC in anaerobic environments because FeS has frequently been observed as a major corrosion product. Recently, methanogenic archaea, nitrate-reducing bacteria, iron-oxidizing bacteria, and iodide-oxidizing bacteria were also reported to corrode metallic iron (Fe0) under anaerobic conditions. Clear understandings of the characterization of iron-corroding microorganisms are required for effective MIC prevention and control. This chapter provides systematics of iron-corroding microorganisms and the proposed mechanism of MIC, including the cathodic-depolarization theory and the extracellular electron transfer, by them.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amachi S, Muramatsu Y, Akiyama Y, Miyazaki K, Yoshiki S, Hanada S, Kamagata Y, Ban-nai T, Shinoyama H, Fujii T (2005) Isolation of iodide-oxidizing bacteria from iodide-rich natural gas brines and seawaters. Microb Ecol 49:547–557

    Article  CAS  PubMed  Google Scholar 

  • Beese-Vasbender PF, Nayak S, Erbe A, Stratmann M, Mayrhofer KJJ (2015) Electrochemical characterization of direct electron uptake in electrical microbially influenced corrosion of iron by the lithoautotrophic SRB Desulfopila corrodens strain IS4. Electrochim Acta 167:321–329

    Article  CAS  Google Scholar 

  • Boopathy R, Daniels L (1991) Effect of pH on anaerobic mild steel corrosion by methanogenic bacteria. Appl Environ Microbiol 57:2104–2108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Breuer M, Rosso KM, Blumberger J, Butt JN (2015) Multi-haem cytochromes in Shewanella oneidensis MR-1: structures, functions and opportunities. J R Soc Interface 12:20141117

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bryant RD, Laishley EJ (1990) The role of hydrogenase in anaerobic biocorrosion. Can J Microbiol 36:259–264

    Article  CAS  Google Scholar 

  • Bryant RD, Jansen W, Boivin J, Laishley EJ, Costerton JW (1991) Effect of hydrogenase and mixed sulfate-reducing bacterial populations on the corrosion of steel. Appl Environ Microbiol 57:2804–2809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bryant RD, Van Ommen Kloeke F, Laishley EJ (1993) Regulation of the periplasmic [Fe] hydrogenase by ferrous iron in Desulfovibrio vulgaris (Hildenborough). Appl Environ Microbiol 59:491–495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Butlin KR, Adams ME, Thomas M (1949) Sulphate-reducing bacteria and internal corrosion of ferrous pipes conveying water. Nature 163:26–27

    Article  CAS  PubMed  Google Scholar 

  • Caffrey SM, Park HS, Been J, Gordon P, Sensen CW, Voordouw G (2008) Gene expression by the sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough grown on an iron electrode under cathodic protection conditions. Appl Environ Microbiol 74:2404–2413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng IF, Muftikian R, Fernando Q, Korte N (1997) Reduction of nitrate to ammonia by zero-valent iron. Chemosphere 35:2689–2695

    Google Scholar 

  • Choe C, Liljestrand HM, Khim J (2004) Nitrate reduction by zero-valent iron under different pH regimes. Appl Geochem 19:335–342

    Google Scholar 

  • Costello JA (1974) Cathodic depolarization by sulphate-reducing bacteria. S Afr J Sci 70:202–204

    CAS  Google Scholar 

  • Daniels L, Belay N, Rajagopal BS, Weimer PJ (1987) Bacterial methanogenesis and growth from CO2 with elemental iron as the sole source of electrons. Science 237:509–511

    Article  CAS  PubMed  Google Scholar 

  • De Windt W, Boon N, Siciliano SD, Verstraete W (2003) Cell density related H2 consumption in relation to anoxic Fe(0) corrosion and precipitation of corrosion products by Shewanella oneidensis MR-1. Environ Microbiol 5:1192–1202

    Article  PubMed  CAS  Google Scholar 

  • Deng X, Nakamura R, Hashimoto K, Okamoto A (2015) Electron extraction from an extracellular electrode by Desulfovibrio ferrophilus strain IS5 without using hydrogen as an electron carrier. Electrochemistry 83:529–531

    Article  CAS  Google Scholar 

  • Deng X, Dohmae N, Nealson KH, Hashimoto K, Okamoto A (2018) Multi-heme cytochromes provide a pathway for survival in energy-limited environments. Sci Adv 4:eaao5682

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Deutzmann JD, Sahin M, Spormann AM (2015) Extracellular enzymes facilitate electron uptake in biocorrosion and bioelectrosynthesis. mBio 6:e00496-15

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dinh HT, Kuever J, Muβmann M, Hassel AW, Stratmann M, Widdel F (2004) Iron corrosion by novel anaerobic microorganisms. Nature 427:829–832

    Article  CAS  PubMed  Google Scholar 

  • Emerson D, Rentz JA, Lilburn TG, Davis RE, Aldrich H, Chan C, Moyer CL (2007) A novel lineage of Proteobacteria involved in formation of marine Fe-oxidizing microbial mat communities. PLoS One 2:e667

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Enning D, Venzlaff H, Garrelfs J, Dinh HT, Meyer V, Mayrhofer K, Hassel AW, Stratmann M, Widdel F (2012) Marine sulfate-reducing bacteria cause serious corrosion of iron under electroconductive biogenic mineral crust. Environ Microbiol 14:1772–1787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Enning E, Garrelfs J (2014) Corrosion of iron by sulfate-reducing bacteria: new views of an old problem. Appl Environ Microbiol 80:1226–1236

    Google Scholar 

  • Ginner JL, Alvarez PJJ, Smith SL, Scherer MM (2004) Nitrate and nitrite reduction by Fe0: influence of mass transport, temperature, and denitrifying microbes. Environ Eng Sci 21:219–229

    Article  CAS  Google Scholar 

  • Heidelberg JF, Paulsen IT, Nelson KE, Gaidos EJ, Nelson WC, Read TD, Eisen JA, Seshadri R, Ward N, Methe B, Clayton RA, Meyer T, Tsapin A, Scott J, Beanan M, Brinkac L, Daugherty S, DeBoy RT, Dodson RJ, Durkin AS, Haft DH, Kolonay JF, Madupu R, Peterson JD, Umayam LA, White O, Wolf AM, Vamathevan J, Weidman J, Impraim M, Lee K, Berry K, Lee C, Mueller J, Khouri H, Gill J, Utterback TR, McDonald LA, Feldblyum TV, Smith HO, Venter JC, Nealson KH, Fraser CM (2002) Genome sequence of the dissimilatory metal ion-reducing bacterium Shewanella oneidensis. Nat Biotechnol 20:1118–1123

    Article  CAS  PubMed  Google Scholar 

  • Iino T, Sakamoto M, Ohkuma M (2015a) Prolixibacter denitrificans sp. nov., an iron-corroding, facultatively aerobic, nitrate-reducing bacterium isolated from crude oil, and emended descriptions of the genus Prolixibacter and Prolixibacter bellariivorans. Int J Syst Evol Microbiol 65:2865–2869

    Article  CAS  PubMed  Google Scholar 

  • Iino T, Ito K, Wakai S, Tsurumaru H, Ohkuma M, Harayama S (2015b) Iron corrosion induced by nonhydrogenotrophic nitrate-reducing Prolixibacter sp. strain MIC1-1. Appl Environ Microbiol 81:1839–1846

    Article  PubMed  PubMed Central  Google Scholar 

  • Iino T, Ohkuma M, Kamagata Y, Amachi S (2016) Iodidimonas muriae gen. nov., sp. nov., an aerobic iodide-oxidizing bacterium isolated from brine of a natural gas and iodine recovery facility, and proposals of Iodidimonadaceae fam. nov., Iodidimonadales ord. nov., Emcibacteraceae fam. nov. and Emcibacterales ord. nov. Int J Syst Evol Microbiol 66:5016–5022

    Article  PubMed  CAS  Google Scholar 

  • Inagaki F, Takai K, Kobayashi H, Nealson KH, Horikoshi K (2003) Sulfurimonas autotrophica gen. nov., sp. nov., a novel sulfur-oxidizing ε-proteobacterium isolated from hydrothermal sediments in the Mid-Okinawa Trough. Int J Syst Evol Microbiol 53:1801–1805

    Article  CAS  PubMed  Google Scholar 

  • Iverson WP (1966) Direct evidence for the cathodic depolarization theory of bacterial Corrosion. Science 151:986–988

    Article  CAS  PubMed  Google Scholar 

  • Jia R, Yang D, Xu D, Gu T (2017) Electron transfer mediators accelerated the microbiologically influence corrosion against carbon steel by nitrate reducing Pseudomonas aeruginosa biofilm. Bioelectrochemistry 118:38–46

    Article  CAS  PubMed  Google Scholar 

  • Kato S, Yumoto I, Kamagata Y (2015) Isolation of acetogenic bacteria that induce biocorrosion by utilizing metallic iron as the sole electron donor. Appl Environ Microbiol 81:67–73

    Article  PubMed  CAS  Google Scholar 

  • Kielemoes J, De Boever P, Verstraete W (2000) Influence of denitrification on the corrosion of iron and stainless steel powder. Environ Sci Technol 34:663–671

    Article  CAS  Google Scholar 

  • Kip N, Jansen S, Leite MFA, de Hollander M, Afanasyev M, Kuramae EE, Van Veen JA (2017) Methanogens predominate in natural corrosion protective layers on metal sheet piles. Sci Rep 7:11899

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kluyver AJ, van Niel CB (1936) Prospects for a natural system of classification of bacteria. Zentralblatt fur Bakteriologie Parasitenkunde Infektionskrankheiten und Hygiene. Abteilung II 94:369–403

    Google Scholar 

  • Labrenz M, Collins MD, Lawson PA, Tindall BJ, Schumann P, Hirsch P (1999) Roseovarius tolerans gen. nov., sp. nov., a budding bacterium with variable bacteriochlorophyll a production from hypersaline Ekho Lake. Int J Syst Bacteriol 49:137–147

    Article  CAS  PubMed  Google Scholar 

  • Lahme S, Enning D, Callbeck CM, Menendez Vega D, Curtis TP, Head IM, Hubert CRJ (2019) Metabolites of an oil field sulfide-oxidizing, nitrate-reducing Sulfurimonas sp. cause severe corrosion. Appl Environ Microbiol 85:e01891–e01818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin KS, Chang NB, Chuang TD (2008) Fine structure characterization of zero-valent iron nanoparticles for decontamination of nitrites and nitrates in wastewater and groundwater. Sci Technol Adv Mater 9:0250151

    Google Scholar 

  • Liu Y, Wang Z, Liu J, Levar C, Edwards MJ, Babauta JT, Kennedy DW, Shi Z, Beyenal H, Bond DR, Clarke TA, Butt JN, Richardson DJ, Rosso KM, Zachara JM, Fredrickson JK, Shi L (2014) A trans-outer membrane porin–cytochrome protein complex for extracellular electron transfer by Geobacter sulfurreducens PCA. Environ Microbiol Rep 6:776–785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Logan BE, Rossi R, Ragab AA, Saikaly PE (2019) Electroactive microorganisms in bioelectrochemical systems. Nat Rev Microbiol 17:307–319

    Article  CAS  PubMed  Google Scholar 

  • Mand J, Park HS, Jack TR, Voordouw G (2014) The role of acetogens in microbially influenced corrosion of steel. Front Microbiol 5:268

    Article  PubMed  PubMed Central  Google Scholar 

  • McBeth JM, Little BJ, Ray RI, Farrar KM, Emerson D (2011) Neutrophilic iron-oxidizing “Zetaproteobacteria” and mild steel corrosion in nearshore marine environments. Appl Environ Microbiol 77:1405–1412

    Article  CAS  PubMed  Google Scholar 

  • Miller RB II, Lawson K, Sadek A, Monty CN, Senko JM (2018) Uniform and pitting corrosion of carbon steel by Shewanella oneidensis MR-1 under nitrate-reducing conditions. Appl Environ Microbiol 84:e00790–e00718

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mori K, Tsurumaru H, Harayama S (2010) Iron corrosion activity of anaerobic hydrogen-consuming microorganisms isolated from oil facilities. J Biosci Bioeng 110:426–430

    Article  CAS  PubMed  Google Scholar 

  • Pankhania IP (1988) Hydrogen metabolism in sulphate-reducing bacteria and its role in anaerobic corrosion. Biofouling 1:27–24

    Article  CAS  Google Scholar 

  • Pankhania IP, Moosavi AN, Hamilton WA (1986) Utilization of cathodic hydrogen by Desulfovibrio vulgaris (Hildenborough). J Gen Microbiol 132:3357–3365

    CAS  Google Scholar 

  • Rakshit S, Matocha CJ, Haszler GR (2005) Nitrate reduction in the presence of wüstite. J Environ Qual 34:1286–1292

    Google Scholar 

  • Shin KH, Cha DK (2008) Microbial reduction of nitrate in the presence of nanoscale zero-valent iron. Chemosphere 72:257–262

    Article  CAS  PubMed  Google Scholar 

  • Spruit CJP, Wanklyn JN (1951) Iron sulphide ratios in corrosion by sulphate-reducing bacteria. Nature 168:951–952

    Article  CAS  PubMed  Google Scholar 

  • Starkey RL (1947) Sulfate reduction and the anaerobic corrosion of iron. Antonie Van Leeuwenhoek 12:193–203

    Article  CAS  PubMed  Google Scholar 

  • Suzuki D, Ueki A, Amaishi A, Ueki K (2007) Desulfopila aestuarii gen. nov., sp. nov., a Gram-negative, rod-like, sulfate-reducing bacterium isolated from an estuarine sediment in Japan. Int J Syst Evol Microbiol 57:520–526

    Article  CAS  PubMed  Google Scholar 

  • Tang HY, Holmes DE, Ueki T, Palacios PA, Lovley DR (2019) Iron corrosion via direct metal-microbe electron transfer. mBio 10:e00303-19

    Article  PubMed  PubMed Central  Google Scholar 

  • Till BA, Weathers LJ, Alvarez PJJ (1998) Fe(0)-supported autotrophic denitrification. Environ Sci Technol 32:634–639

    Article  CAS  Google Scholar 

  • Tsurumaru H, Ito N, Mori K, Wakai S, Uchiyama T, Iino T, Hosoyama A, Ataku H, Nishijima K, Mise M, Shimizu A, Harada T, Horikawa H, Ichikawa N, Sekigawa T, Jinno K, Tanikawa S, Yamazaki J, Sasaki K, Yamazaki S, Fujita N, Harayama H (2018) An extracellular [NiFe] hydrogenase mediating iron corrosion is encoded in a genetically unstable genomic island in Methanococcus maripaludis. Sci Rep 8:15149

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Uchiyama T, Ito K, Mori K, Tsurumaru H, Harayama S (2010) Iron-corroding methanogen isolated from a crude-oil storage tank. Appl Environ Microbiol 76:1783–1788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Venzlaff H, Enning D, Srinivasan J, Mayrhofer K, Hassel AW, Widdel F, Stratmann M (2013) Accelerated cathodic reaction in microbial corrosion of iron due to direct electron uptake by sulfate-reducing bacteria. Corros Sci 66:88–96

    Article  CAS  Google Scholar 

  • von Wolzogen Kühr CAH, van der Vlugt IS (1934) The graphitization of cast iron as an electrobiochemical process in anaerobic soil. Water 18:147–165

    Google Scholar 

  • Wakai S, Ito K, Iino T, Tomoe Y, Mori K, Harayama S (2014) Corrosion of iron by iodide-oxidizing bacteria isolated from brine in an iodine production facility. Microb Ecol 68:519–527

    Article  CAS  PubMed  Google Scholar 

  • Wanklyn JN, Spruit CJP (1952) Influence of sulphate-reducing bacteria on the corrosion potential of iron. Nature 169:928–929

    Article  CAS  Google Scholar 

  • White GF, Edwards MJ, Gomez-Perez L, Richardson DJ, Butt JN, Clarke TA (2016) Mechanisms of bacterial extracellular electron exchange. In: Advances in microbial physiology, vol 68. Academic Press, Cambridge, MA, pp 87–138

    Google Scholar 

  • Widdel F, Bak F (1992) Gram-negative mesophilic sulfate-reducing bacteria. In: Balows A, Trüper HG, Dworkin M, Harder W, Schleifer K-H (eds) The prokaryotes, vol 6, 2nd edn. Springer, New York, pp 3352–3378

    Chapter  Google Scholar 

  • Xiaomeng F, Xiaohong G, Jun M, Hengyu A (2009) Kinetics and corrosion products of aqueous nitrate reduction by iron powder without reaction conditions control. J Environ Sci 21:1028–1035

    Article  CAS  Google Scholar 

  • Xiong Y, ShiL CB, Mayer MU, Lower BH, Londer Y, Bose S, Hochella MF, Fredrickson JK, Squier TC (2006) High-affinity binding and direct electron transfer to solid metals by the Shewanella oneidensis MR-1 outer membrane c-type cytochrome OmcA. J Am Chem Soc 128:13978–13979

    Article  CAS  PubMed  Google Scholar 

  • Xu D, Li Y, Song F, Gu T (2013) Laboratory investigation of microbiologically influenced corrosion of C1018 carbon steel by nitrate reducing bacterium Bacillus licheniformis. Corros Sci 77:385–390

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takao Iino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Iino, T. (2020). Microorganisms Inducing Microbiologically Influenced Corrosion. In: Ishii, M., Wakai, S. (eds) Electron-Based Bioscience and Biotechnology . Springer, Singapore. https://doi.org/10.1007/978-981-15-4763-8_13

Download citation

Publish with us

Policies and ethics