Skip to main content
Log in

Interaction Between Methicillin-Resistant Staphylococcus aureus (MRSA) and Acanthamoeba polyphaga

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

The interactions that occur between bacteria and amoebae can give through mutual relations, where both organisms benefit from the association or parasitic in which one organism benefits at the expense of the other. When these organisms share the same environment, it can result in some changes in the growth of organisms, in adaptation patterns, in morphology, development or even in their ability to synthesize proteins and other substances. In this study, the interaction between Acanthamoeba polyphaga and Staphylococcus aureus (MRSA) was evaluated using a co-culture model at different incubation times. The results showed that 89% of amoebic cells remained viable after contact with the bacteria. The bacterial isolate was visualized inside the amoeba through confocal microscopy and fluorescence for up to 216 h of co-cultivation. The lysate of amoebic culture increased the growth of S. aureus (MRSA), and the effect of supernatant of culture inhibited bacterial growth over the incubation times, suggesting that A. polyphaga produced some metabolite, that inhibited the growth of bacteria. Moreover, the encystment of the A. polyphaga was increased by the bacteria presence. The results show that A. polyphaga and S. aureus interaction may have an important influence on survival of both, and specially indicate a possible effect on the metabolics characteristics each other.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Abul KA, Lichtman AH (2008) Imunologia Celular e Molecular. Elsevier, Rio de Janeiro

    Google Scholar 

  2. Adekambi T, Salah SB, Khlif M, Raoult D, Drancourt M (2006) Survival of environmental Mycobacteria in Acanthamoeba polyphaga. Appl Environ Microbiol 72:5974–5981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Allen PG, Dawidowicz EA (1990) Phagocytosis in Acanthamoeba. A mannose receptor is responsible for the binding and phagocytosis of yeast. J Cell Physiol 145:508–513

    Article  CAS  PubMed  Google Scholar 

  4. Anacarso I, Niederhäusern SD, Messi P, Guerrieri E, Iseppi R, Sabia C, Bondi M (2012) Acanthamoeba polyphaga, a potential environmental vector for the transmission of food-borne and opportunistic pathogens. J Basic Microbiol 52:261–268

    Article  PubMed  Google Scholar 

  5. Bowers B, Korn ED (1969) The fine structure of Acanthamoeba castellanii (Neff strain) II. J Cell Biol 41:786–805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Cateau E, Verdon J, Fernandez B, Hechard Y, Rodier MH (2011) Acanthamoeba sp: promotes the survival and growth of Acinetobacter baumanii. FEMS Microbiol Lett 319:19–25

    Article  CAS  PubMed  Google Scholar 

  7. Fieseler L, Doyscher D, Loessner MJ, Schuppler M (2014) Acanthamoeba release compounds which promote growth of Listeria monocytogenes and other bacteria. Appl Microbiol Biotechnol 98:3091–3097

    Article  CAS  PubMed  Google Scholar 

  8. Gao LY, Harb OS, Abu Kwaik Y (1997) Utilization of similar mechanisms by Legionella pneumophila to parasitize two evolutionarily distant host cells, mammalian macrophages and protozoa. Infect Immun 11:4738–4746

    Google Scholar 

  9. Greub G, Raoult D (2004) Microorganisms resistant to free-living amoebae. Clin Microbiol Rev 17:413–433

    Article  PubMed  PubMed Central  Google Scholar 

  10. Huws SA, Morley RJ, Jones MV, Brown MRW, Smith AW (2008) Interactions of some common pathogenic bacteria with Acanthamoeba polyphaga. FEMS Microbiol Lett 282:258–265

    Article  CAS  PubMed  Google Scholar 

  11. Khan NA (2004) The pathogenesis of Acanthamoeba infections: current status and future implications. Eyetext. http://eprints.bbk.ac.uk/205/. Accessed 11 May 2016

  12. Khan NA (2006) Acanthamoeba: biology and increasing importance in human health. FEMS Microbiol Rev 30:564–595

    Article  PubMed  Google Scholar 

  13. Koehsler M, Leitsch D, Fuernkranz U, Duchene M, Aspoeck H, Walochnik J (2008) Acanthamoeba strains lose their abilities to encyst synchronously upon prolonged axenic culture. Parasitol Res 102:1069–1072

    Article  Google Scholar 

  14. Lamrabet O, Mba Medie F, Drancourt M (2012) Acanthamoeba polyphaga-enhanced growth of Mycobacterium smegmatis. PLoS ONE 1:298–333

    Google Scholar 

  15. Lee XY, Reimmann C, Greub G, Sufrin J, Croxatto A (2012) The Pseudomonas aeruginosa toxin l-2-amino-4-methoxy-trans-3-butenoic acid inhibits growth and induces encystment in Acanthamoeba castellanii. Microbes Infect 14:268–272

    Article  CAS  PubMed  Google Scholar 

  16. Marciano-Cabral F, Cabral G (2003) Acanthamoeba spp. as agents of disease in humans. Clin Microbiol 16:273–307

    Article  Google Scholar 

  17. Matz C, Jurgens K (2005) High motility reduces grazing mortality of planktonic bacteria. Appl Environ Microbiol 71:921–929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Molmeret M, Jarraud S, Morin JP, Pernin P et al (2001) Different growth rates in amoeba of genotipically related environmental and clinical Legionella pneumophila strains isolated from a termal spa. Epidemiol Infect 126:231–239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Morales JL, Rivas AO, Foronda P, Martínez E, Valladares B (2005) Isolation and identification of pathogenic Acanthamoeba strains in Tenerife, Canary Islands, Spain from water sources. Parasitol Res 95:273–277

    Article  Google Scholar 

  20. Panjwani N (2010) Pathogenesis of Acanthamoeba Keratitis. Ocul Surf 8:70–79

    Article  PubMed  PubMed Central  Google Scholar 

  21. Schuster FL, Visvesvara GS (2004) Free-living amoebae as opportunistic and nonopportunistic pathogens of humans and animals. Int J Parasitol 34:1001–1027

    Article  PubMed  Google Scholar 

  22. Siddiqui R, Khan NA (2012) Biology and pathogenesis of Acanthamoeba. Parasites Vectors 5:6–19

    Article  PubMed  PubMed Central  Google Scholar 

  23. Silva GJ, Souza IA, Higino JS, Siqueira-Junior JP, Pereira JV, Pereira MSV (2007) Atividade antimicrobiana do extrato de Anacardium occidentale Linn. em amostras multirresistentes de Staphylococcus aureus. Rev Bras Farmacogn 17:572–577

    Article  Google Scholar 

  24. Thomas V, Mcdonnell G, Denyer SP, Maillard JY (2010) Free-living amoebae and their intracellular pathogenic microorganisms: risks for water quality. FEMS Microbiol Rev 34:231–259

    Article  CAS  PubMed  Google Scholar 

  25. Tomov A, Tsevtkova ED, Tomova IA, Michailova LI, Kassovski VK (1999) Persistance and multiplication of obligate anaerobe bacteria in amoebae under aerobic conditions. Anaerobe 5:19–23

    Article  CAS  PubMed  Google Scholar 

  26. Trabelsi H, Sellami A, Dendena F, Sellami H, Cheikh-rouhou F, Makni F et al (2010) Free-living amoebae (FLA): morphological and molecular identification of Acanthamoeba in dental unit water. Parasite 17:67–70

    Article  CAS  PubMed  Google Scholar 

  27. Valeru SP, Wai SN, Saeed A, Sandstrom G, Abd H (2012) ToxR of Vibrio cholera affects biofilm, rugosity and survival with Acanthamoeba castellanii. BMC Res Notes 5:33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Vanessa B, Virginie M, Nathalie Q, Marie-Hélène R, Christine I (2012) Hartmannella vermiformis can promote proliferation of Candida spp. in tap-water. Water Res 46:5707–5714

    Article  CAS  PubMed  Google Scholar 

  29. Walochnik J, Obwaller A, Aapöck H (2000) Correlations between morphological, molecular biological, and physiological characteristics in clinical and nonclinical isolates of Acanthamoeba spp. Appl Environ Microbiol 66:4408–4413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wang X, Ahearn DG (1997) Effect of bacteria on survival and growth of Acanthamoeba castellanii. Curr Microbiol 34:212–215

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for financial support, the Microbiology, Immunology and Parasitology Department of the Universidade Federal do Rio Grande do Sul, Brazil.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marilise Brittes Rott.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Souza, T.K., Soares, S.S., Benitez, L.B. et al. Interaction Between Methicillin-Resistant Staphylococcus aureus (MRSA) and Acanthamoeba polyphaga . Curr Microbiol 74, 541–549 (2017). https://doi.org/10.1007/s00284-017-1196-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-017-1196-z

Keywords

Navigation