Skip to main content

Advertisement

Log in

A lacZ Reporter-Based Strategy for Rapid Expression Analysis and Target Validation of Mycobacterium tuberculosis Latent Infection Genes

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

We report a novel lacZ fusion vector and demonstrate its utility for expression analysis of genes associated with Mycobacterium tuberculosis latent infection. The vector contains E. coli (oriE) and mycobacterial (oriM) origins of replication, a kanamycin resistance gene (Kmr) as selection marker, and a lacZ reporter gene in fusion with MCS for cloning of upstream regulatory sequence of the desired genes. β-galactosidase activity of the vector was standardized for expression analysis under latent mycobacterial conditions using Phsp60, a constitutive mycobacterial promoter, utilizing Mycobacterium smegmatis as model organism. Validation of the vector was done by cloning and expression analysis of PhspX (alpha crystalline) and Picl (isocitrate lyase), promoters from two of the genes shown to be involved in M. tuberculosis persistence. Both genes showed appreciable levels of β-galactosidase expression under hypoxia-induced persistent conditions in comparison to their actively replicating state. Expression analysis of a set of hypothetical genes was also done, of which Rv0628c showed increased expression under persistent conditions. The reported fusion vector and the strategy can be effectively used for short listing and validation of drug targets deduced from various non-conclusive approaches such as bioinformatics and microarray analysis against latent/persistent form of mycobacterial infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Betts JC, Lukey PT, Robb LC, McAdam RA, Duncan K (2002) Evaluation of a nutrient starvation model of Mycobacterium tuberculosis persistence by gene and protein expression profiling. Mol Microbiol 43:717–731

    Article  PubMed  CAS  Google Scholar 

  2. Carroll P, Schreuder LJ, Muwanguzi-Karugaba J, Wiles S, Robertson BD, Ripoll J, Ward TH, Bancroft GJ, Schaible UE, Parish T (2010) Sensitive detection of gene expression in mycobacteria under replicating and non-replicating conditions using optimized far-red reporters. PLoS ONE 5(3):e9823

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Cobat A, Orlova M, Barrera L, Schurr E (2013) Host genomics and control of tuberculosis infection. Public Health Genomics 16(1–2):44–49

    Article  PubMed  CAS  Google Scholar 

  4. Coralli C, Cemazar M, Kanthou C, Tozer GM, Dachs GU (2001) Limitations of the reporter green fluorescent protein under simulated tumor conditions. Cancer Res 61(12):4784–4790

    PubMed  CAS  Google Scholar 

  5. Davis SL, Be NA, Lamichhane G, Nimmagadda S, Pomper MG, Bishai WR, Jain SK (2009) Bacterial thymidine kinase as a non-invasive imaging reporter for Mycobacterium tuberculosis in live animals. PLoS ONE 4(7):e6297

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Deng Z, Shan Y, Pan Q, Gao X, Yan A (2013) Anaerobic expression of the gadE-mdtEF multidrug efflux operon is primarily regulated by the two-component system ArcBA through antagonizing the H-NS mediated repression. Front Microbiol. doi:10.3389/fmicb.2013.00194

    Google Scholar 

  7. Dhandayuthapani S, Via L, Thomas C, Horowitz P, Deretic D, Deretic V (1995) Green fluorescent protein as a marker for gene expression and cell biology of mycobacterial interactions with macrophages. Mol Microbiol 17(5):901–912

    Article  PubMed  CAS  Google Scholar 

  8. Dick T, Lee BH, Murugasu-Oei B (1998) Oxygen depletion induced dormancy in Mycobacterium smegmatis. FEMS Microbiol Lett 163(2):159–164

    Article  PubMed  CAS  Google Scholar 

  9. Faye T, Asebo A, Salehian Z, Langsrud T, Nes IF, Brede DA (2008) Construction of a reporter vector system for in vivo analysis of promoter activity in Propionibacterium freudenreichii. Appl Environ Microbiol 74(11):3615–3617

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Hutter B, Dick T (1998) Increased alanine dehydrogenase activity during dormancy in Mycobacterium smegmatis. FEMS Microbiol Lett 167(1):7–11

    Article  PubMed  CAS  Google Scholar 

  11. Josserand V, Texier-Nogues I, Huber P, Favrot MC, Coll J-L (2007) Non-invasive in vivo optical imaging of the lacZ and luc gene expression in mice. Gene Ther 14(22):1587–1593

    Article  PubMed  CAS  Google Scholar 

  12. Mayuri Bagchi G, Das TK, Tyagi JS (2002) Molecular analysis of the dormancy response in Mycobacterium smegmatis: expression analysis of genes encoding the DevR-DevS two-component system, Rv3134c and chaperone alpha-crystallin homologues. FEMS Microbiol Lett 211(2):231–237

    PubMed  CAS  Google Scholar 

  13. McKinney JD, zu Bentrup KH, Muñoz-Elías EJ, Miczak A, Chen B, Chan W-T, Swenson D, Sacchettini JC, Jacobs WR, Russell DG (2000) Persistence of Mycobacterium tuberculosis in macrophages and mice requires the glyoxylate shunt enzyme isocitrate lyase. Nature 406(6797):735–738

    Article  PubMed  CAS  Google Scholar 

  14. Miller JH (1972) Experiments in molecular genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor

    Google Scholar 

  15. Murphy DJ, Brown JR (2007) Identification of gene targets against dormant phase Mycobacterium tuberculosis infections. BMC Infect Dis 7:84

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. New D, Miller-Martini D, Wong Y (2003) Reporter gene assays and their applications to bioassays of natural products. Phytother Res 17(5):439–448

    Article  PubMed  CAS  Google Scholar 

  17. Pelicic V, Jackson M, Reyrat J-M, Jacobs WR, Gicquel B, Guilhot C (1997) Efficient allelic exchange and transposon mutagenesis in Mycobacterium tuberculosis. Proc of the Natl Acad of Sci U.S.A. 94(20):10955–10960

    Article  CAS  Google Scholar 

  18. Saviola B (2013) Mycobacterium tuberculosis adaptation to survival in a human host. In: Mahboub BH, Vats MG (eds.) Tuberculosis - current issues in diagnosis and management. INTECH Open Acess Publisher, Croatia, European Union, p 3–18

  19. Shi L, Jung Y-J, Tyagi S, Gennaro ML, North RJ (2003) Expression of Th1-mediated immunity in mouse lungs induces a Mycobacterium tuberculosis transcription pattern characteristic of nonreplicating persistence. Proc Natl Acad Sci USA 100(1):241–246

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Stewart GR, Newton SM, Wilkinson KA, Humphreys IR, Murphy HN, Robertson BD, Wilkinson RJ, Young DB (2005) The stress-responsive chaperone α-crystallin 2 is required for pathogenesis of Mycobacterium tuberculosis. Mol Microbiol 55(4):1127–1137

    Article  PubMed  CAS  Google Scholar 

  21. Stover CK, de la Cruz VF, Fuerst TR, Burlein JE, Benson LA, Bennett LT, Bansal GP, Young JF, Lee MH, Hatfull GF, Snapper SB, Barletta RG, Jacobs WR, Bloom BR (1991) New use of BCG for recombinant vaccines. Nature 351(6326):456–460

    Article  PubMed  CAS  Google Scholar 

  22. Tsien RY (1998) The green fluorescent protein. Annu Rev Biochem 67(1):509–544

    Article  PubMed  CAS  Google Scholar 

  23. Villemagne B, Crauste C, Flipo M, Baulard AR, Déprez B, Willand N (2012) Tuberculosis: the drug development pipeline at a glance. Eur J Med Chem 51:1–16

    Article  PubMed  CAS  Google Scholar 

  24. Voskuil MI, Visconti K, Schoolnik G (2004) Mycobacterium tuberculosis gene expression during adaptation to stationary phase and low-oxygen dormancy. Tuberculosis 84(3):218–227

    Article  PubMed  CAS  Google Scholar 

  25. Wayne LG, Hayes LG (1996) An in vitro model for sequential study of shiftdown of Mycobacterium tuberculosis through two stages of nonreplicating persistence. Infect Immun 64(6):2062–2069

    PubMed  PubMed Central  CAS  Google Scholar 

  26. WHO. Global tuberculosis report (2014) World Health Organization Geneva; http://www.who.int/tb/publications/global_report/en/. Accessed 8 Aug 2015

  27. Zahrt TC (2003) Molecular mechanisms regulating persistent Mycobacterium tuberculosis infection. Microbes Infect 5(2):159–167

    Article  PubMed  CAS  Google Scholar 

  28. Zhang Y (2004) Persistent and dormant tubercle bacilli and latent tuberculosis. Front Biosci 9:1136–1156

    Article  PubMed  CAS  Google Scholar 

  29. Zhang Y, Xiao M, Horiyama T, Zhang Y, Li X, Nishino K, Yan A (2011) The multidrug efflux pump MdtEF protects against nitrosative damage during the anaerobic respiration in Escherichia coli. J Biol Chem 286(30):26576–26584

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Zumla A, Atun R, Maeurer M, Kim PS, Jean-Philippe P, Hafner R, Schito M (2012) Eliminating tuberculosis and tuberculosis–HIV co-disease in the 21st century: key perspectives, controversies, unresolved issues, and needs. J Infect Dis 205(suppl 2):S141–S146

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements and Funding Information

Financial assistance provided by Department of Science & Technology (DST), Government of India (DST-INSPIRE Fellowship) to Ms. Shivani Sood, and Council of Scientific & Industrial Research (CSIR- SRF) to Ms. Satinder Kaur is gratefully acknowledged. The authors are also thankful to Prof. B. S. Srivastava and Dr. Ranjana Srivastava, CDRI, Lucknow, for providing strains, template plasmids for the study, and to SAIF, AIIMS, New Delhi for transmission electron microscopy of the samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rahul Shrivastava.

Ethics declarations

Conflict of Interest

The authors declare that they have no financial/commercial conflicts of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2982 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sood, S., Kaur, S. & Shrivastava, R. A lacZ Reporter-Based Strategy for Rapid Expression Analysis and Target Validation of Mycobacterium tuberculosis Latent Infection Genes. Curr Microbiol 72, 213–219 (2016). https://doi.org/10.1007/s00284-015-0942-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-015-0942-3

Keywords

Navigation