Skip to main content
Log in

Microcin V Production in Lactobacillus plantarum LB-B1 Using Heterologous Leader Peptide from Pediocin PA-1

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Lactobacillus strains producing bacteriocins have attracted highly attention as probiotic cultures in animal nutrition since the use of antibiotics was forbidden in the livestock industry. Lactobacillus plantarum LB-B1 isolated from the fermented dairy product can produce pediocin PA-1, which has a strong inhibition of Listeria but hardly any influence on Gram-negative spoilage agents. In this work, L. plantarum LB-B1 was selected as the host to express microcin V using the leader peptide of pediocin PA-1. Well-diffusion assay combined with Tricine-SDS–polyacrylamide gel showed that microcin V could be successfully expressed and secreted in L. plantarum LB-B1. Meanwhile, the production of microcin V did not affect the secretion of pediocin PA-1. It is worthwhile noted that the supernatant from L. plantarum 8148-ColV had a more effective inhibition of Listeria than that from the control strain L. plantarum 8148. Furthermore, this supernatant also unexpectedly produced antibacterial activity against Staphylococcus aureus. Taken altogether, these results suggested that pediocin PA-1 and microcin V in the supernatant could generate synergistic effect, which not only enhanced the antibacterial ability but also expanded the antibacterial spectrum. Therefore, the recombinant strain has a great potential application as a probiotic to reduce the level of enteric pathogens in livestock industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Aukrust TW, Brurberg MB, Nes IF (1995) Transformation of Lactobacillus by electroporation. Methods Mol Biol 47:201–208

    CAS  PubMed  Google Scholar 

  2. Casadaban MJ, Cohen SN (1980) Analysis of gene control signals by DNA fusion and cloning in Escherichia coli. J Mol Biol 138(2):179–207

    Article  CAS  PubMed  Google Scholar 

  3. Casey PG, Gardiner GE, Casey G, Bradshaw B, Lawlor PG, Lynch PB et al (2007) A five-strain probiotic combination reduces pathogen shedding and alleviates disease signs in pigs challenged with Salmonella enterica Serovar Typhimurium. Appl Environ Microbiol 73(6):1858–1863

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Chehade H, Braun V (1988) Iron-regulated synthesis and uptake of colicin V. FEMS Microbiol Lett 52(3):177–181

    Article  CAS  Google Scholar 

  5. Corr SC, Li Y, Riedel CU, O’Toole PW, Hill C, Gahan CG (2007) Bacteriocin production as a mechanism for the antiinfective activity of Lactobacillus salivarius UCC118. Proc Natl Acad Sci USA 104(18):7617–7621

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Dobson A, Cotter PD, Ross RP, Hill C (2012) Bacteriocin production: a probiotic trait? Appl Environ Microbiol 78(1):1–6

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. EC (2001) Commission of the European Communities, Commission Recommendation 2001/459/EC Official. J Eur Un L 161:42–44

    Google Scholar 

  8. EC (2003) Commission of the European Communities, Commission Regulation (EC) No.1831/2003 Official. J Eur Un L 268:29–43

    Google Scholar 

  9. Economou A, Christie PJ, Fernandez RC, Palmer T, Plano GV, Pugsley AP (2006) Secretion by numbers: protein traffic in prokaryotes. Mol Microbiol 62(2):308–319

    Article  CAS  PubMed  Google Scholar 

  10. Fath MJ, Zhang LH, Rush J et al (1994) Purification and characterization of colicin V from Escherichia coli culture supernatants. Biochemistry 33(22):6911–6917

    Article  CAS  PubMed  Google Scholar 

  11. Gaggia F, Di Gioia D, Baffoni L, Biavati B (2011) The role of protective and probiotic cultures in food and feed and their impact in food safety. Trends Food Sci Technol 22:S58–S66

    Article  CAS  Google Scholar 

  12. Gerard F, Pradel N, Wu LF (2005) Bactericidal activity of colicin V is mediated by an inner membrane protein, SdaC, of Escherichia coli. J Bacteriol 187(6):1945–1950

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Gillor O, Giladi I, Riley MA (2009) Persistence of colicinogenic Escherichia coli in the mouse gastrointestinal tract. BMC Microbiol 9:165

    Article  PubMed Central  PubMed  Google Scholar 

  14. Gilson L, Mahanty HK, Kolter R (1987) Four plasmid genes are required for colicin V synthesis, export, and immunity. J Bacteriol 169(6):2466–2470

    PubMed Central  CAS  PubMed  Google Scholar 

  15. Gilson L, Mahanty HK, Kolter R (1990) Genetic analysis of an MDR-like export system: the secretion of colicin V. EMBO J 9(12):3875–3884

    PubMed Central  CAS  PubMed  Google Scholar 

  16. Guerra NP, Bernárdez PF, Méndez J et al (2007) Production of four potentially probiotic lactic acid bacteria and their evaluation as feed additives for weaned piglets. Anim Feed Sci Technol 134(1):89–107

    Article  CAS  Google Scholar 

  17. Hassan M, Kjos M, Nes IF et al (2012) Natural antimicrobial peptides from bacteria: characteristics and potential applications to fight against antibiotic resistance. J Appl Microbiol 113(4):723–736

    Article  CAS  PubMed  Google Scholar 

  18. Havarstein LS, Diep DB, Nes IF (1995) A family of bacteriocin ABC transporters carry out proteolytic processing of their substrates concomitant with export. Mol Microbiol 16(2):229–240

    Article  CAS  PubMed  Google Scholar 

  19. Holo H, Nes IF (1989) High-Frequency Transformation, by Electroporation, of Lactococcus lactis subsp. cremoris Grown with Glycine in Osmotically Stabilized Media. Appl Environ Microbiol 55(12):3119–3123

    PubMed Central  CAS  PubMed  Google Scholar 

  20. Kanonenberg K, Schwarz CK, Schmitt L (2013) Type I secretion systems—a story of appendices. Res Microbiol 164(6):596–604

    Article  CAS  PubMed  Google Scholar 

  21. Kuipers OP, de Ruyter PGGA, Kleerebezem M, de Vos WM (1998) Quorum sensing-controlled gene expression in lactic acid bacteria. J Biotechnol 64(1):15–21

    Article  CAS  Google Scholar 

  22. Lather P, Mohanty AK, Jha P et al (2015) Changes associated with cell membrane composition of Staphylococcus aureus on acquisition of resistance against class IIa bacteriocin and its in vitro substantiation. Eur Food Res Technol 240(1):101–107

    Article  CAS  Google Scholar 

  23. Mathur S, Singh R (2005) Antibiotic resistance in food lactic acid bacteria-a review. Int J Food Microbiol 105(3):281–295

    Article  CAS  PubMed  Google Scholar 

  24. Mierau I, Kleerebezem M (2005) 10 years of the nisin-controlled gene expression system (NICE) in Lactococcus lactis. Appl Microbiol Biotechnol 68(6):705–717

    Article  CAS  PubMed  Google Scholar 

  25. Rud I, Jensen PR, Naterstad K, Axelsson L (2006) A synthetic promoter library for constitutive gene expression in Lactobacillus plantarum. Microbiology 152(4):1011–1019

    Article  CAS  PubMed  Google Scholar 

  26. Ruiz L, Zomer A, O’Connell-Motherway M, van Sinderen D, Margolles A (2012) Discovering novel bile protection systems in Bifidobacterium breve UCC2003 through functional genomics. Appl Environ Microbiol 78(4):1123–1131

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Salyers AA, Gupta A, Wang Y (2004) Human intestinal bacteria as reservoirs for antibiotic resistance genes. Trends Microbiol 12(9):412–416

    Article  CAS  PubMed  Google Scholar 

  28. van Belkum MJ, Worobo RW, Stiles ME (1997) Double-glycine-type leader peptides direct secretion of bacteriocins by ABC transporters: colicin V secretion in Lactococcus lactis. Mol Microbiol 23(6):1293–1301

    Article  PubMed  Google Scholar 

  29. van de Guchte M, van der Vossen JM, Kok J, Venema G (1989) Construction of a lactococcal expression vector: expression of hen egg white lysozyme in Lactococcus lactis subsp. lactis. Appl Environ Microbiol 55(1):224–228

    PubMed Central  PubMed  Google Scholar 

  30. Verstegen MW, Williams BA (2002) Alternatives to the use of antibiotics as growth promoters for monogastric animals. Anim Biotechnol 13(1):113–127

    Article  CAS  PubMed  Google Scholar 

  31. Wang G, Li D, Ma X, An, H., Zhai Z, Ren F, Hao Y (2015) Functional role of oppA encoding an oligopeptide-binding protein from Lactobacillus salivarius Ren in bile tolerance. J Ind Microbiol Bio 42:1167–1174

  32. Xie Y, An H, Hao Y, Qin Q, Huang Y, Luo Y et al (2011) Characterization of an anti- Listeria bacteriocin produced by Lactobacillus plantarum LB-B1 isolated from koumiss, a traditionally fermented dairy product from China. Food Control 22(7):1027–1031

    Article  CAS  Google Scholar 

  33. Yang CC, Konisky J (1984) Colicin V-treated Escherichia coli does not generate membrane potential. J Bacteriol 158(2):757–759

    PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by the planning subject of ‘the twelfth five-year-plan’ in national science and technology for the rural development (2013BAD10B02) and by National High-Tech R&D Program Grants (2012AA101606). We thank Professor Willem M. de Vos (Wageningen University) for the gift of Lactococcus lactis NZ9000 and plasmid pNZ8148.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanling Hao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, X., Wang, G., Li, D. et al. Microcin V Production in Lactobacillus plantarum LB-B1 Using Heterologous Leader Peptide from Pediocin PA-1. Curr Microbiol 72, 357–362 (2016). https://doi.org/10.1007/s00284-015-0927-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-015-0927-2

Keywords

Navigation