Skip to main content
Log in

Effect of Encapsulation on Viability of Pediococcus pentosaceus OZF During Its Passage Through the Gastrointestinal Tract Model

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

The main goal of this study was to develop an improved oral delivery system for Pediococcus pentosaceus OZF, a promising probiotic bacterium, and to assess its viability under simulated gastrointestinal (GI) tract model by comparing the efficiency of microbiological and molecular approaches. Encapsulation was carried out using extrusion method and as a result, encapsulation system including 0.75 % lactulose, 1.8 % sodium alginate, 0.1 M CaCl2, and 5 min gelling time was shown to have a significantly protective effect against pH 2.0 acid stress over 3 h. However, completely loss of viability was exhibited by free OZF cells under similar conditions. To provide an additional barrier for capsules, coating process was investigated using different biopolymers, and the survival rates of free and encapsulated OZF cells upon expose to simulated GI conditions were detected by conventional culture techniques and propidium monoazide-quantitative polymerase chain reaction (PMA-qPCR) method. No significant differences between the biopolymers were detected, except the chitosan which leads totally 85 % protection and extra 25 % improvement in the survival of OZF cells compared to uncoated capsules. In conclusion, our findings indicated that chitosan-coated capsules provided an important protective effect on the viability of OZF cells against the GI system conditions encountered during the transit of food. In addition, this study was found successful in monitoring the viable OZF cells in capsules using PMA-qPCR method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Aurelia P, Capurso L, Castellazzi AM, Clerici M, Giovannini M, Morelli L et al (2011) Probiotics and health: an evidence-based review. Pharmacol Res 63(5):366–376

    Article  Google Scholar 

  2. Bajracharya P, Islam MA, Jiang T, Kang S, Choi Y, Cho C (2012) Effect of microencapsulation of Lactobacillus salivarus 29 into alginate/chitosan/alginate microcapsules on viability and cytokine induction. J Microencapsul 29(5):429–436

    Article  CAS  PubMed  Google Scholar 

  3. Chavarri I, Maranon RA, Ibanez FC, Marzo F, Villaran MC (2010) Microencapsulation of a probiotic and prebiotic in alginate-chitosan capsules improves survival in simulated gastro-intestinal conditions. Int J Food Microbiol 142:185–189

    Article  CAS  PubMed  Google Scholar 

  4. Cook MT, Tzortzis G, Charalampopoulos D, Khutoryanskiy VV (2012) Microencapsulation of probiotics for gastrointestinal delivery. J Controlled Release 162:56–67

    Article  CAS  Google Scholar 

  5. Cook MT, Tzortzis G, Charalampopoulos D, Khutoryanskiy VV (2014) Microencapsulation of a synbiotic into PLGA/alginate multiparticulate gels. Int J Pharm 466:400–408

    Article  CAS  PubMed  Google Scholar 

  6. Desfosses-Foucault E, Dussault-Lepage V, Le Boucher C, Savard P, La Pointe G, Roy D (2012) Assessment of probiotic viability during Cheddar cheese manufacture and ripening using propidium monoazide-PCR quantification. Front Microbiol 3(350):1–11

    Google Scholar 

  7. De Vos P, Faas MM, Spasojevic M, Sikkema J (2010) Encapsulation for preservation of functionality and targeted delivery of bioactive food components. Int Dairy J 20:292–302

    Article  Google Scholar 

  8. Ding WK, Shah NP (2009) Effect of various encapsulating materials on the stability of probiotic bacteria. J Food Sci 74:100–107

    Article  Google Scholar 

  9. Doleyres Y, Lacroix C (2005) Technologies with free and immobilised cells for probiotic bifidobacteria production and protection. Int Dairy J 15:973–988

    Article  CAS  Google Scholar 

  10. FAO/WHO (2001) Report on Joint FAO/WHO Expert consultation on evaluation of health and nutritional properties of probiotics in food including powder milk with live lactic acid bacteria

  11. Fu CJ, Carter JN, Li Y, Porter JH, Kerley MS (2006) Comparison of agar plate and real-time PCR on enumeration of Lactobacillus, Clostridium perfringens and total anaerobic bacteria in dog faeces. Lett Appl Microbiol 42:490–494

    Article  CAS  PubMed  Google Scholar 

  12. Furet JP, Quenee P, Tailliez P (2002) Identification and quantification of lactic acid bacteria by real time quantitative PCR assay. Sci Aliments 22:33–44

    Article  CAS  Google Scholar 

  13. Garcia-Cayuela T, Tabasco R, Pelaez C, Requena T (2009) Simultaneous detection and enumeration of viable lactic acid bacteria and bifidobacteria in fermented milk by using propidium monoazide and real-time PCR. Int Dairy J 19:405–499

    Article  CAS  Google Scholar 

  14. Gbassi GK, Vandamme T, Yolou FS, Marchioni E (2011) In vitro effects of pH, bile salts and enzymes on the release and viability of encapsulated Lactobacillus plantarum strains in a gastrointestinal tract model. Int Dairy J 21:97–102

    Article  CAS  Google Scholar 

  15. Gibson GR, Roberfroid MB (1995) Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. J Nutr 125:1401–1412

    CAS  PubMed  Google Scholar 

  16. Gomes da Cruz A, Alonso Buriti FC, Batista de Souza CH, Fonseca Faria JA, Isay Saad SM (2009) Probiotic cheese: health benefits, technological and stability aspects. Trends Food Sci Tech 20:344–354

    Article  CAS  Google Scholar 

  17. Huq T, Khan A, Khan RA, Riedl B, Lacroix M (2014) Encapsulation of probiotic bacteria in biopolymeric system. Crit Rev Food Sci Nutr 53(9):909–916

    Article  Google Scholar 

  18. Jimenez-Pranteda ML, Poncelet D, Nader-Macias ME, Arcos A, Aguilera M, Monteoliva-Sanchez M et al (2012) Stability of lactobacilli encapsulated in various microbial polymers. J Biosci Bioeng 113(2):179–184

    Article  CAS  PubMed  Google Scholar 

  19. Kechagia M, Basoulis D, Konstantopoulou S, Dimitriadi D, Gyftopoulou K, Skarmoutsou N et al (2013) Health benefits of probiotics: a review. Nutrition. doi:10.5402/2013/481651

  20. Kim SJ, Cho SY, Kim SH, Song OJ, Shin S, Cha DS et al (2008) Effect of microencapsulation on viability and other characteristics in Lactobacillus acidophilus ATCC 43121. Lebenson Wiss Technol 41:493–500

    Article  CAS  Google Scholar 

  21. Kneifel W, Rajal A, Kulbe KD (2000) In vitro growth behaviour of probiotic bacteria in culture media with carbohydrates of prebiotic importance. Microb Ecol Health D 12:27–34

    Article  CAS  Google Scholar 

  22. Koo SM, Cho YH, Huh CS, Baek YJ, Park J (2001) Improvement of stability of Lactobacillus casei YIT 9018 by microencapsulation using alginate and chitosan. J Microbiol Biotechol 11:376–383

    CAS  Google Scholar 

  23. Krasaekoopt W, Bhandari B, Deeth H (2003) Evaluation of encapsulation techniques of probiotics for yoghurt. Int Dairy J 13:3–13

    Article  CAS  Google Scholar 

  24. Krasaekoopt W, Bhandari B, Deeth H (2004) The influence of coating materials on some properties of alginate beads and survivability of microencapsulated probiotic bacteria. Int Dairy J 14:737–743

    Article  CAS  Google Scholar 

  25. Lankaputhra WEV, Shah NP (1995) Survival of Lactobacillus acidophilus and Bifidobacterium spp. in the presence of acid and bile salts. Cult Dairy Prod J 30:2–7

    CAS  Google Scholar 

  26. Lee YK, Salminen S (1995) The coming to age of probiotics. Trends Food Sci Technol 6:241–245

    Article  Google Scholar 

  27. Lee KY, Heo TR (2000) Survival of Bifidobacterium longum immobilized in calcium alginate beads in simulated gastric juices and bile salt solution. Appl Environ Microbiol 66:869–873

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Loozen G, Boon N, Pauwels M, Quirynen M, Teughels W (2011) Live/dead real-time polymerase chain reaction to assess new therapies against dental plaque-related pathologies. Mol Oral Microbiol 26:253–261

    Article  CAS  PubMed  Google Scholar 

  29. Lopez-Rubio A, Gavara R, Lagaron JM (2006) Bioactive packaging: turning foods into healthier foods through biomaterials. Trends Food Sci Technol 17:567–575

    Article  CAS  Google Scholar 

  30. Mandal S, Hati S, Puniya AK, Khamruic K, Singh K (2014) Enhancement of survival of alginate-encapsulated Lactobacillus casei NCDC 298. J Sci Food Agric 94(10):1994–2001

    Article  CAS  PubMed  Google Scholar 

  31. Martin-Dejardin F, Ebel B, Lemetais G, Minh HNT, Gervais P, Cachon R et al (2013) A way to follow the viability of encapsulated Bifidobacterium bifidum subjected to a freeze-drying process in order to target the colon: interest of flow cytometry. Eur J Pharm Sci 49:166–174

    Article  CAS  PubMed  Google Scholar 

  32. Matsuda K, Tsuji H, Asahara T, Kado Y, Nomoto K (2007) Sensitive quantitative determination of commensal bacteria by rRNA-targeted reverse transcription-PCR. Appl Environ Microbiol 73(1):32–39

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Michida H, Tamalampudi S, Pandiella SS, Webb C, Fukuda H, Kondo A (2006) Effect of cereals extract and cereal fiber on viability of Lactobacillus plantarum under gastrointestinal tract conditions. Biochem Eng J 28:73–78

    Article  Google Scholar 

  34. Murata Y, Toniwa S, Miyamoto E, Kawashima S (1999) Preparation of alginate gel beads containing chitosan salt and their function. Int J Pharm 176:265–268

    Article  CAS  Google Scholar 

  35. Nagpal R, Kumar A, Kumar M, Behare PV, Jain S, Yadav H (2012) Probiotics, their health benefits and applications for developing healthier foods: a review. FEMS Microbiol Lett 334(1):1–15

    Article  CAS  PubMed  Google Scholar 

  36. Neeley ET, Phister TG, Mills DA (2005) Differential real-time PCR assay for enumeration of lactic acid bacteria in wine. Appl Environ Microbiol 71(12):8954–8957

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Osmanagaoglu O, Kiran F, Ataoglu H (2010) Evaluation of in vitro probiotic potential of Pediococcus pentosaceus OZF isolated from human breast milk. Probiotics Antimicrob Proteins 2:162–174

    Article  Google Scholar 

  38. Osmanagaoglu O, Kiran F, Nes IF (2011) A probiotic bacterium, Pediococcus pentosaceus OZF, isolated from human breast milk produces pediocin AcH/PA-1. Afr J Biotechnol 10(11):2017–2079

    Google Scholar 

  39. Osmanagaoglu O, Kiran F, Yagci FC, Gursel I (2013) Immunomodulatory function and in vivo properties of Pediococcus pentosaceus OZF, a promising probiotic strain. Ann Microbiol 63(4):1311–1318

    Article  CAS  Google Scholar 

  40. Patel S, Goyal A (2012) The current trends and future perspectives of prebiotics research: a review. Biotech 2(2):115–125

    CAS  Google Scholar 

  41. Picot A, Lacroix C (2004) Encapsulation of Bifidobacteria in whey protein-based microcapsules and survival in simulated gastrointestinal conditions and in yoghurt. Int Dairy J 14:505–515

    Article  CAS  Google Scholar 

  42. Sekhar MS, Unnikrishnan MK, Rodrigues GS, Mukhopadhyay C (2013) Synbiotic formulation of probiotic and lactulose combination for hepatic encephalopathy treatment: a realistic hope? Med Hypotheses 81(2):167–168

    Article  CAS  PubMed  Google Scholar 

  43. Shah NP (2007) Functional cultures and health benefits. Int Dairy J 17(11):1262–1277

    Article  Google Scholar 

  44. Slavin J (2013) Fiber and Prebiotics: mechanisms and Health Benefits. Nutrients 5(4):1417–1435

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Smidsrod O, Skjak-Braek G (1990) Alginate as immobilization matrix for cells. Trends Biotechnol 8:71–78

    Article  CAS  PubMed  Google Scholar 

  46. Sultana K, Godward G, Reynolds N, Arumugaswamy R, Peiris P, Kailasapathy K (2000) Encapsulation of probiotic bacteria with alginate-starch and evaluation of survival in simulated gastrointestinal conditions and in yoghurt. Int J Food Microbiol 62:47–55

    Article  CAS  PubMed  Google Scholar 

  47. Talwalkar A, Kailasapathy K (2003) Effect of microencapsulation on oxygen toxicity in probiotic bacteria. Aust J Dairy Tech 58(1):36–39

    Google Scholar 

  48. Tanaka H, Matsumura M, Veliky IA (1984) Diffusion characteristics of substrate in calcium alginate beads. Biotechnol Bioeng 26:53–58

    Article  CAS  PubMed  Google Scholar 

  49. Trabelsi I, Bejar W, Ayadi D, Chouayekh H, Kammoun R, Bejar S et al (2013) Encapsulation in alginate and alginate coated-chitosan improved the survival of newly probiotic in oxgall and gastric juice. Int J Biol Macromol 61:36–42

    Article  CAS  PubMed  Google Scholar 

  50. Hansen LT, Allan-Wojtas PM, Jin YL, Paulson AT (2002) Survival of ca-alginate microencapsulated Bifidobacterium spp. in milk and simulated gastro-intestinal conditions. Food Microbiol 19:35–45

    Article  CAS  Google Scholar 

  51. Walter J, Hertel C, Tannock GW, Lis CM, Munro K, Hammes WP (2001) Detection of Lactobacillus, Pediococcus, Leuconostoc, and Weissella species in human feces by using group-specific PCR primers and denaturing gradient gel electrophoresis. Appl Environ Microbiol 67(6):2578–2785

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Yasunaga A, Yoshida A, Morikawa K, Maki K, Nakamura S, Soh I et al (2013) Monitoring the prevalence of viable and dead cariogenic bacteria in oral specimens and in vitro biofilms by qPCR combined with propidium monoazide. BMC Microbiol 13:157–165

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Zhou Y, Martins E, Groboillot A, Champagne CP, Neufeld RJ (1998) Spectrophotometric quantification of lactic bacteria in alginate and control of cell release with chitosan coating. J Appl Microbiol 84:342–348

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Scientific and Technological Research Council of Turkey (TUBITAK; Project number: SBAG-112S670). We thank Dr. Ilker Buyuk for his technical support on qPCR analysis.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fadime Kiran.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kiran, F., Mokrani, M. & Osmanagaoglu, O. Effect of Encapsulation on Viability of Pediococcus pentosaceus OZF During Its Passage Through the Gastrointestinal Tract Model. Curr Microbiol 71, 95–105 (2015). https://doi.org/10.1007/s00284-015-0832-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-015-0832-8

Keywords

Navigation