Skip to main content

Advertisement

Log in

Photodynamic Inactivation Mediated by Erythrosine and its Derivatives on Foodborne Pathogens and Spoilage Bacteria

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

The purpose of the present study was to evaluate the efficacy of photodynamic inactivation (PDI) mediated by erythrosine (ERY) and its ester derivatives erythrosine methyl ester (ERYMET) and erythrosine butyl ester (ERYBUT) on foodborne pathogens and spoilage bacteria. We evaluated Staphylococcus aureus ATCC 25923, Aeromonas hydrophila ATCC 7966, Salmonella enterica serotype Typhimurium ATCC 14028, Escherichia coli ATCC 25922, and Pseudomonas aeruginosa ATCC 27853. The toxicity of all of the compounds was assessed in VERO cells. PDI mediated by ERY and its derivatives combined with a light-emitting diode was performed at different concentrations and exposure times. S. aureus was more photosensitive than Gram-negative bacteria to ERY, ERYMET, and ERYBUT. The ERY-mediated PDI of S. aureus induced a significant reduction of 4.0 log CFU/ml at a light dose of 40 J/cm2. ERYMET and ERYBUT at lower light doses than ERY completely eradicated S. aureus. When photoirradiated with ERY at light doses of 156 and 234 J/cm2, A. hydrophila was completely eradicated. ERYBUT was more efficient in the PDI of A. hydrophila than ERYMET, even at 1 x 10−5 M and lower light doses. Salmonella Typhimurium, E. coli, and P. aeruginosa required higher concentrations of photosensitizers to reduce cell survival. ERYBUT and ERY may be promising photosensitizing agents against A. hydrophila and S. aureus. They were effective at reducing bacterial counts at nontoxic concentrations. The photoinactivation rate of the evaluated bacteria decreased in the following order: S. aureus > A. hydrophila > E. coli > S. Typhimurium > P. aeruginosa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Amat-Guerri F, López-Gonzalez MMC, Martínez-Utrila R, Sastre R (1990) Spectrophotometric determination of ionization and isomerization constants of Rose Bengal, eosin Y and some derivatives. Dyes Pigments 13:219–232. doi:10.1016/0143-7208(90)80021-G

    Article  CAS  Google Scholar 

  2. Buchovec I, Vaitonis Z, Luksiene Z (2009) Novel approach to control Salmonella enterica by modern biophotonic technology: photosensitization. J Appl Microbiol 106:748–754. doi:10.1111/j.1365-2672.2008.03993.x

    Article  CAS  PubMed  Google Scholar 

  3. CDC (2014) CDC 2011 Estimates: Findings. CDC Estimates of foodborne illness in the United States. http://www.cdc.gov/foodborneburden/2011-foodborne-estimates.html. Accessed 15 Dec 2014

  4. Costa ACBP, Rasteiro VMC, Pereira CA, Hashimoto ESHS, Beltrame M Jr, Junqueira JC, Jorge AOC (2011) Susceptibility of Candida albicans and Candida dubliniensis to erythrosine- and LED-mediated photodynamic therapy. Arch Oral Biol 56:1299–1305. doi:10.1016/j.archoralbio.2011.05.013

    Article  CAS  PubMed  Google Scholar 

  5. Costa ACBP, Rasteiro VMC, Pereira CA, Rossoni RD, Junqueira JC, Jorge AOC (2011) The effects of rose bengal- and erythrosine-mediated photodynamic therapy on Candida albicans. Mycoses 55:56–63. doi:10.1111/j.1439-0507.2011.02042.x

    Article  PubMed  Google Scholar 

  6. De Lucca AJ, Carter-Wientjes C, Williams KA, Bhatnagar D (2012) Blue light (470 nm) effectively inhibits bacterial and fungal growth. Lett Appl Microbiol 55:460–466. doi:10.1111/lam.12002

    PubMed  Google Scholar 

  7. Eisenbrand G, Pool-Zobel B, Baker V, Balls M, Blaauboer BJ, Boobis A, Carere A, Kevekordes S, Lhuguenot J, Pieters R, Kleiner J (2002) Methods of in vitro toxicology. Food Chem Toxicol 40:193–236

    Article  CAS  PubMed  Google Scholar 

  8. FDA (2010) Overview of food ingredients, additives & colors. International Food Information Council (IFIC) and U.S. Food and Drug Administration. http://www.fda.gov/food/ingredientspackaginglabeling/foodadditivesingredients/ucm094211.htm#how. Accessed 17 Feb 2015

  9. Gad F, Zahra T, Hasan T, Hamblin MR (2004) Effects of growth phase and extracellular slime on photodynamic inactivation of Gram-positive pathogenic bacteria. Antimicrob Agents Ch 48:2173–2178. doi:10.1128/AAC.48.6.2173-2178.2004

    Article  CAS  Google Scholar 

  10. Gerola AP, Santana A, França PB, Tsubone TM, de Oliveira HPM, Caetano W, Kimura E, Hioka N (2011) Effects of metal and the phytyl chain on chlorophyll derivatives: physicochemical evaluation for photodynamic inactivation of microorganisms. Photochem Photobiol 87:884–894. doi:10.1111/j.1751-1097.2011.00935.x

    Article  CAS  PubMed  Google Scholar 

  11. Goulart RC, Thedei G Jr, Souza SLS, Tedesco AC, Ciancaglini P (2010) Comparative study of methylene blue and erythrosine dyes employed in photodynamic therapy for inactivation of planktonic and biofilm-cultivated Aggregatibacter actinomycetemcomitans. Photomed Laser Surg 28:85–90. doi:10.1089/pho.2009.2698

    Article  Google Scholar 

  12. Haddad A, Sessos A, Attias M, Farina M, Nazareth MM, Silveira M, Benchimol M, Soares MJ, Barth MO, Machado DR, Souto-Patrón T, Souza W (2007) Técnicas de microscopia eletrônica aplicadas às ciências biológicas. Sociedade Brasileira de Microscopia, Rio de Janeiro

    Google Scholar 

  13. Jori G, Fabris C, Soncin M, Ferro S, Coppellotti O, Dei D, Fantetti L, Chiti G, Roncucci G (2006) Photodynamic therapy in the treatment of microbial infections: basic principles and perspective applications. Laser Surg Med 38:468–481. doi:10.1002/lsm.20361

    Article  Google Scholar 

  14. Kato H, Komagoe K, Nakanishi Y, Inoue T, Katsu T (2012) Xanthene dyes induce membrane permeabilization of bacteria and erythrocytes by photoinactivation. Photochem Photobiol 88:423–431. doi:10.1111/j.1751-1097.2012.01080.x

    Article  CAS  PubMed  Google Scholar 

  15. Ke E, Nazzal S, Tseng Y, Chen C, Tsai T (2012) Erythrosine-mediated photodynamic inactivation of bacteria and yeast using green light-emitting diode light. J Food Drug Anal 20:951–956. doi:10.6227/jfda.2012200426

    CAS  Google Scholar 

  16. Kussovski V, Mantareva V, Angelov I, Orozova P, Wöhrle D, Schnurpfeil G, Borisova E, Avramov L (2009) Photodynamic inactivation of Aeromonas hydrophila by cationic phthalocyanines with different hydrophobicity. FEMS Microbiol Lett 294:133–140. doi:10.1111/j.15746968.2009.01555.x

    Article  CAS  PubMed  Google Scholar 

  17. Lee Y, Park H, Lee J, Seo H, Lee S (2012) The photodynamic therapy on Streptococcus mutans biofilms using erythrosine and dental halogen curing unit. Int J Oral Sci 4:196–201. doi:10.1038/ijos.2012.63

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Lipinski B, Hanson C, Lomax J, Kitinoja L, Waite R, Searchinger T (2013) Reducing food loss and waste. World Resources Institute. http://www.wri.org/sites/default/files/reducing_food_loss_and_waste.pdf. Accessed 17 Feb 2015

  19. Luksiene Z, Brovko L (2013) Antibacterial photosensitization-based treatment for food safety. Food Eng Rev 5:185–199. doi:10.1007/s12393-013-9070-7

    Article  CAS  Google Scholar 

  20. Luksiene Z, Buchovec I, Paskeviciute E (2010) Inactivation of several strains of Listeria monocytogenes attached to the surface of packaging material by Na-Chlorophyllin-based photosensitization. J Photoch Photobio B 101:326–331. doi:10.1016/j.jphotobiol.2010.08.002

    Article  CAS  Google Scholar 

  21. Maisch T, Spannberger F, Regensburger J, Felgenträger A, Bäumler W (2012) Fast and effective: intense pulse light photodynamic inactivation of bacteria. J Ind Microbiol Biotechnol 39:1013–1021. doi:10.1007/s10295-012-1103-3

    Article  CAS  PubMed  Google Scholar 

  22. Menezes PFC, Bernal C, Imasato H, Bagnatob VS, Perussi JR (2007) Photodynamic activity of different dyes. Laser Phys 17:468–471. doi:10.1134/S1054660X07040251

    Article  CAS  Google Scholar 

  23. Miles AA, Misra SS (1938) The estimation of the bactericidal power of the blood. J Hyg 38:732–749

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63

    Article  CAS  PubMed  Google Scholar 

  25. Mpountoukas P, Pantazaki A, Kostareli E, Christodoulou P, Kareli D, Poliliou S, Mourelatos C, Lambropoulou V, Lialiaris T (2010) Cytogenetic evaluation and DNA interaction studies of the food colorants amaranth, erythrosine and tartrazine. Food Chem Toxicol 48:2934–2944. doi:10.1016/j.fct.2010.07.030

    Article  CAS  PubMed  Google Scholar 

  26. Pellosi DS, Estevão BM, Freitas CF, Tsubone TM, Caetano W, Hioka N (2013) Photophysical properties of erythrosin ester derivatives in ionic and non-ionic micelles. Dyes Pigments 99:705–712. doi:10.1016/j.dyepig.2013.06.026

    Article  CAS  Google Scholar 

  27. Pereira MA, Faustino MAF, Tomé JPC, Neves MGPMS, Tomé AC, Cavaleiro JAS, Cunha Â, Almeida A (2014) Influence of external bacterial structures on the efficiency of photodynamic inactivation by a cationic porphyrin. Photochem Photobiol Sci 13:680–690. doi:10.1039/c3pp50408e

    Article  CAS  PubMed  Google Scholar 

  28. Rabello BR, Gerola AP, Pellosi DS, Tessaro AL, Aparício JL, Caetano W, Hioka N (2012) Singlet oxygen dosimetry using uric acid as a chemical probe: systematic evaluation. J Photoch Photobio A 238:53–62. doi:10.1016/j.jphotochem.2012.04.012

    Article  CAS  Google Scholar 

  29. Rossoni RD, Junqueira JC, Santos ELS, Costa ACB, Jorge AOC (2010) Comparison of the efficacy of rose bengal and erythrosin in photodynamic therapy against Enterobacteriaceae. Lasers Med Sci 25:581–586. doi:10.1007/s10103-010-0765-1

    Article  PubMed  Google Scholar 

  30. Scharff RL (2011) Economic burden from health losses due to foodborne illness in the United States. J Food Protect 75:123–131. doi:10.4315/0362-028X.JFP-11-058

    Article  Google Scholar 

  31. Sperandio FF, Huang Y, Hamblin MR (2013) Antimicrobial photodynamic therapy to kill Gram-negative bacteria. Rec Patents on Anti-Infect Drug Discov 8:108–120. doi:10.2174/1574891X113089990012#sthash.OgWrCKH6.dpuf

    Article  CAS  Google Scholar 

  32. Su Y, Jun S, Rao S, Cai Y, Yang Y (2011) Photodynamic antimicrobial activity of hypocrellin A. J Photoch Photobiol B 103:29–34. doi:10.1016/j.jphotobiol.2011.01.008

    Article  CAS  Google Scholar 

Download references

Acknowledgments

CNPq - Brazilian National Council for Scientific and Technological Development, for the financial supporting.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jane Martha Graton Mikcha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yassunaka, N.N., de Freitas, C.F., Rabello, B.R. et al. Photodynamic Inactivation Mediated by Erythrosine and its Derivatives on Foodborne Pathogens and Spoilage Bacteria. Curr Microbiol 71, 243–251 (2015). https://doi.org/10.1007/s00284-015-0827-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-015-0827-5

Keywords

Navigation