Skip to main content
Log in

Fast and effective: intense pulse light photodynamic inactivation of bacteria

  • Environmental Microbiology
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

The goal of this study was to investigate the photodynamic toxicity of TMPyP (5, 10, 15, 20-Tetrakis (1-methylpyridinium-4-yl)-porphyrin tetra p-toluenesulfonate) in combination with short pulses (ms) of an intense pulse light source within 10 s against Bacillus atrophaeus, Staphylococcus aureus, Methicillin-resistant S. aureus and Escherichia coli, major pathogens in food industry and in health care, respectively. Bacteria were incubated with a photoactive dye (TMPyP) that is subsequently irradiated with visible light flashes of 100 ms to induce oxidative damage immediately by generation of reactive oxygen species like singlet oxygen. A photodynamic killing efficacy of up to 6 log10 (>99.9999%) was achieved within a total treatment time of 10 s using a concentration range of 1–100 μmol TMPyP and multiple light flashes of 100 ms (from 20 J cm−2 up to 80 J cm−2). Both incubation of bacteria with TMPyP alone or application of light flashes only did not have any negative effect on bacteria survival. Here we could demonstrate for the first time that the combination of TMPyP as the respective photosensitizer and a light flash of 100 ms of an intense pulsed light source is enough to generate sufficient amounts of reactive oxygen species to kill these pathogens within a few seconds. Increasing antibiotic resistance requires fast and efficient new approaches to kill bacteria, therefore the photodynamic process seems to be a promising tool for disinfection of horizontal surfaces in industry and clinical purposes where savings in time is a critical point to achieve efficient inactivation of microorganisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. al-Masaudi SB, Day MJ, Russell AD (1991) Antimicrobial resistance and gene transfer in Staphylococcus aureus. J Appl Bacteriol 70(4):279–290

    Article  PubMed  CAS  Google Scholar 

  2. Alves E, Costa L, Carvalho CM, Tome JP, Faustino MA, Neves MG, Tome AC, Cavaleiro JA, Cunha A, Almeida A (2009) Charge effect on the photoinactivation of Gram-negative and Gram-positive bacteria by cationic meso-substituted porphyrins. BMC Microbiol 9:70

    Article  PubMed  Google Scholar 

  3. Ang JY, Ezike E, Asmar BI (2004) Antibacterial resistance. Indian J Pediatr 71(3):229–239

    Article  PubMed  Google Scholar 

  4. Appelbaum PC (2006) MRSA–the tip of the iceberg. Clin Microbiol Infect 12(Suppl 2):3–10

    Article  PubMed  CAS  Google Scholar 

  5. Babilas P, Schreml S, Szeimies RM, Landthaler M (2010) Intense pulsed light (IPL): a review. Lasers Surg Med 42(2):93–104

    Article  PubMed  Google Scholar 

  6. Baquero F, Negri MC, Morosini MI, Blazquez J (1998) Antibiotic-selective environments. Clin Infect Dis 27(Suppl 1):S5–S11

    Article  PubMed  Google Scholar 

  7. Birosova L, Mikulasova M (2009) Development of triclosan and antibiotic resistance in Salmonella enterica serovar Typhimurium. J Med Microbiol 58(Pt 4):436–441

    Article  PubMed  CAS  Google Scholar 

  8. Blot S, Depuydt P, Vandewoude K, De Bacquer D (2007) Measuring the impact of multidrug resistance in nosocomial infection. Curr Opin Infect Dis 20(4):391–396

    Article  PubMed  Google Scholar 

  9. Bower CK, Daeschel MA (1999) Resistance responses of microorganisms in food environments. Int J Food Microbiol 50(1–2):33–44

    Article  PubMed  CAS  Google Scholar 

  10. Boyce JM, Pittet D (2002) Guideline for hand hygiene in health-care settings. recommendations of the healthcare infection control practices advisory committee and the HIPAC/SHEA/APIC/IDSA hand hygiene task force. Am J Infect Control 30(8):S1–S46

    Article  PubMed  Google Scholar 

  11. Brancaleon L, Moseley H (2002) Laser and non-laser light sources for photodynamic therapy. Lasers Med Sci 17(3):173–186

    Article  PubMed  CAS  Google Scholar 

  12. Branski LK, Al-Mousawi A, Rivero H, Jeschke MG, Sanford AP, Herndon DN (2009) Emerging infections in burns. Surg Infect (Larchmt) 10(5):389–397

    Article  Google Scholar 

  13. Breitenbach T, Kuimova MK, Gbur P, Hatz S, Schack NB, Pedersen BW, Lambert JD, Poulsen L, Ogilby PR (2009) Photosensitized production of singlet oxygen: spatially resolved optical studies in single cells. Photochem Photobiol Sci 8(4):442–452

    Article  PubMed  CAS  Google Scholar 

  14. Chapple RM, Inglis B, Stewart PR (1992) Lethal and mutational effects of solar and UV radiation on Staphylococcus aureus. Arch Microbiol 157(3):242–248

    Article  PubMed  CAS  Google Scholar 

  15. Exon JH (1984) A review of chlorinated phenols. Vet Hum Toxicol 26(6):508–520

    PubMed  CAS  Google Scholar 

  16. Feese E, Ghiladi RA (2009) Highly efficient in vitro photodynamic inactivation of Mycobacterium smegmatis. J Antimicrob Chemother 64(4):782–785

    Article  PubMed  CAS  Google Scholar 

  17. Gad F, Zahra T, Francis KP, Hasan T, Hamblin MR (2004) Targeted photodynamic therapy of established soft-tissue infections in mice. Photochem Photobiol Sci 3(5):451–458

    Article  PubMed  CAS  Google Scholar 

  18. Garcez AS, Nunez SC, Hamblin MR, Ribeiro MS (2008) Antimicrobial effects of photodynamic therapy on patients with necrotic pulps and periapical lesion. J Endod 34(2):138–142

    Article  PubMed  Google Scholar 

  19. Garcez AS, Ribeiro MS, Tegos GP, Nunez SC, Jorge AO, Hamblin MR (2007) Antimicrobial photodynamic therapy combined with conventional endodontic treatment to eliminate root canal biofilm infection. Lasers Surg Med 39(1):59–66

    Article  PubMed  Google Scholar 

  20. Goldman MP, Weiss RA, Weiss MA (2005) Intense pulsed light as a nonablative approach to photoaging. Dermatol Surg 31(2):1179–1187 discussion 1187

    PubMed  CAS  Google Scholar 

  21. Gottfried V, Peled D, Winkelman JW, Kimel S (1988) Photosensitizers in organized media: singlet oxygen production and spectral properties. Photochem Photobiol 48(2):157–163

    Article  PubMed  CAS  Google Scholar 

  22. Grinholc M, Szramka B, Kurlenda J, Graczyk A, Bielawski KP (2008) Bactericidal effect of photodynamic inactivation against methicillin-resistant and methicillin-susceptible Staphylococcus aureus is strain-dependent. J Photochem Photobiol B 90(1):57–63

    Article  PubMed  CAS  Google Scholar 

  23. Grinholc M, Szramka B, Olender K, Graczyk A (2007) Bactericidal effect of photodynamic therapy against methicillin-resistant Staphylococcus aureus strain with the use of various porphyrin photosensitizers. Acta Biochim Pol 54(3):665–670

    PubMed  CAS  Google Scholar 

  24. Grinholc M, Zawacka-Pankau J, Gwizdek-Wisniewska A, Bielawski KP (2011) Evaluation of the role of the pharmacological inhibition of Staphylococcus aureus multidrug resistance pumps and the variable levels of the uptake of the sensitizer in the strain-dependent response of Staphylococcus aureus to PPArg(2)-based photodynamic inactivation. Photochem Photobiol 86(5):1118–1126

    Article  Google Scholar 

  25. Huycke MM, Sahm DF, Gilmore MS (1998) Multiple-drug resistant enterococci: the nature of the problem and an agenda for the future. Emerg Infect Dis 4(2):239–249

    Article  PubMed  CAS  Google Scholar 

  26. Imlay JA, Linn S (1988) DNA damage and oxygen radical toxicity. Science 240(4857):1302–1309

    Article  PubMed  CAS  Google Scholar 

  27. Jori G, Fabris C, Soncin M, Ferro S, Coppellotti O, Dei D, Fantetti L, Chiti G, Roncucci G (2006) Photodynamic therapy in the treatment of microbial infections: basic principles and perspective applications. Lasers Surg Med 38(5):468–481

    Article  PubMed  Google Scholar 

  28. Komagoe K, Kato H, Inoue T, Katsu T (2011) Continuous real-time monitoring of cationic porphyrin-induced photodynamic inactivation of bacterial membrane functions using electrochemical sensors. Photochem Photobiol Sci 10(7):1181–1188

    Article  PubMed  CAS  Google Scholar 

  29. Komerik N, Nakanishi H, MacRobert AJ, Henderson B, Speight P, Wilson M (2003) In vivo killing of porphyromonas gingivalis by toluidine blue-mediated photosensitization in an animal model. Antimicrob Agents Chemother 47(3):932–940

    Article  PubMed  CAS  Google Scholar 

  30. Maisch T, Baier J, Franz B, Maier M, Landthaler M, Szeimies RM, Baumler W (2007) The role of singlet oxygen and oxygen concentration in photodynamic inactivation of bacteria. Proc Natl Acad Sci USA 104(17):7223–7228

    Article  PubMed  CAS  Google Scholar 

  31. Maisch T, Moor AC, Regensburger J, Ortland C, Szeimies RM, Baumler W (2011) Intense pulse light and 5-ALA PDT: phototoxic effects in vitro depend on the spectral overlap with protoporphyrine IX but do not match cut-off filter notations. Lasers Surg Med 43(2):176–182

    Article  PubMed  Google Scholar 

  32. Maisch T, Wagner J, Papastamou V, Nerl HJ, Hiller KA, Szeimies RM, Schmalz G (2009) Combination of 10% EDTA, photosan, and a blue light hand-held photopolymerizer to inactivate leading oral bacteria in dentistry in vitro. J Appl Microbiol 107(5):1569–1578

    Article  PubMed  CAS  Google Scholar 

  33. Mathur S, Singh R (2005) Antibiotic resistance in food lactic acid bacteria–a review. Int J Food Microbiol 105(3):281–295

    Article  PubMed  CAS  Google Scholar 

  34. Merchat M, Bertolini G, Giacomini P, Villanueva A, Jori G (1996) Meso-substituted cationic porphyrins as efficient photosensitizers of Gram-positive and Gram-negative bacteria. J Photochem Photobiol B 32(3):153–157

    Article  PubMed  CAS  Google Scholar 

  35. Miles AA, Misra SS, Irwin JO (1938) The estimation of the bactericidal power of the blood. J Hyg (Lond) 38(6):732–749

    Article  CAS  Google Scholar 

  36. Nitzan Y, Dror R, Ladan H, Malik Z, Kimel S, Gottfried V (1995) Structure-activity relationship of porphines for photoinactivation of bacteria. Photochem Photobiol 62(2):342–347

    Article  PubMed  CAS  Google Scholar 

  37. Pottier R, Truscott TG (1986) The photochemistry of haematoporphyrin and related systems. Int J Radiat Biol Relat Stud Phys Chem Med 50(3):421–452

    Article  PubMed  CAS  Google Scholar 

  38. Ragas X, Dai T, Tegos GP, Agut M, Nonell S, Hamblin MR (2011) Photodynamic inactivation of Acinetobacter baumannii using phenothiazinium dyes: in vitro and in vivo studies. Lasers Surg Med 42(5):384–390

    Article  Google Scholar 

  39. Raulin C, Greve B, Grema H (2003) IPL technology: a review. Lasers Surg Med 32(2):78–87

    Article  PubMed  Google Scholar 

  40. Salmon-Divon M, Nitzan Y, Malik Z (2004) Mechanistic aspects of Escherichia coli photodynamic inactivation by cationic tetra-meso(N-methylpyridyl)porphine. Photochem Photobiol Sci 3(5):423–429

    Article  PubMed  CAS  Google Scholar 

  41. Shamban AT (2009) Current and new treatments of photodamaged skin. Facial Plast Surg 25(5):337–346

    Article  PubMed  CAS  Google Scholar 

  42. Silvestry-Rodriguez N, Sicairos-Ruelas EE, Gerba CP, Bright KR (2007) Silver as a disinfectant. Rev Environ Contam Toxicol 191:23–45

    Article  PubMed  CAS  Google Scholar 

  43. Snellings WM, Weil CS, Maronpot RR (1984) A two-year inhalation study of the carcinogenic potential of ethylene oxide in Fischer 344 rats. Toxicol Appl Pharmacol 75(1):105–117

    Article  PubMed  CAS  Google Scholar 

  44. Usui Y (1973) Determination of quantum yield of singlet oxygen formation by photosensitization. Chem Lett 7:743–744

    Article  Google Scholar 

  45. Wigle DT, Arbuckle TE, Walker M, Wade MG, Liu S, Krewski D (2007) Environmental hazards: evidence for effects on child health. J Toxicol Environ Health B Crit Rev 10(1–2):3–39

    PubMed  CAS  Google Scholar 

  46. Wilkinson F, Helman W, Ross AB (1993) Quantum yields for the photosensitized formation of the lowest electronically excited singelt state of molecular oxygen in solution. J Phys Chem Ref Data 22:113–262

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The excellent technical assistance of Ewa Kowalewski and Francesco Santarelli is gratefully acknowledged. No financial conflict of interest is declared.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tim Maisch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maisch, T., Spannberger, F., Regensburger, J. et al. Fast and effective: intense pulse light photodynamic inactivation of bacteria. J Ind Microbiol Biotechnol 39, 1013–1021 (2012). https://doi.org/10.1007/s10295-012-1103-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-012-1103-3

Keywords

Navigation