Skip to main content
Log in

Comparative Analysis of Sporulating and Spore-Deficient Strains of Agrocybe salicacola Based on the Transcriptome Sequences

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

The large number of spores produced by edible mushrooms cause many problems, including causing lung disease, depleting natural genetic diversity, and reduced quality of fruiting bodies. Obtaining spore-deficient strains and understanding the underlying molecular mechanisms of such strains are important for breeding work. In this study, we crossed monokaryotic strains isolated from the edible fungi Agrocybe salicacola to obtain three spore-deficient strains with losses of the sterigmata on the surface of the lamella. A mating test revealed that recessive alleles distributed in some strains might control sterigmata development during the mitotic or meiotic phases. Transcriptome analysis revealed that the majority of the genes involved in DNA mismatch repair, base excision repair, and homologous recombination exhibited down-regulated expression patterns in the mutant fruiting bodies. Five genetic fragments, which were highly similar to the GTP-cyclohydrolase encoding gene, the DNA repair gene rad 8, and cell wall integrity and stress response component-encoding genes, were all expressed exclusively in the wild-type strains; these findings provide important information for the study of the spore development of edible fungi.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Baars J, Hesen H (2008) Experience with sporeless strains of oyster mushroom (Pleurotus ostreatus) in commercial production. In: Greuning MV (ed) Science and cultivation of edible and medicinal fungi (17th International Society for Mushroom Science 2008), Pretoria, South Africa, pp 774–787

  2. Baars JJP, Sonnenberg ASM, Mikosch TSP, Van Griensven LJLD (2000) Development of a sporeless strain of oyster mushroom Pleurotus ostreatus. In: Van Griensven LJLD (ed) Science and cultivation of edible fungi. Balkema, Rotterdam, pp 317–323

    Google Scholar 

  3. Bastouill-Descollonges Y, Manachère G (1990) Control of basidiospore production by a nuclear gene in the fungus Coprinus congregatus. Sex Plant Reprod 3:103–108

    Article  Google Scholar 

  4. Berne S, Pohleven J, Vidic I, Reboj Pohleven F, Turk T, Macek P, Sonnenberg A, Sepcić K (2007) Ostreolysin enhances fruiting initiation in the oyster mushroom (Pleurotus ostreatus). Mycol Res 111:1431–1436

    Article  CAS  PubMed  Google Scholar 

  5. Blau N, Bonafé L, Thöny B (2001) Tetrahydrobiopterin deficiencies without hyperphenylalaninemia: diagnosis and genetics of dopa-responsive dystonia and sepiapterin reductase deficiency. Mol Genet Metab 74:172–185

    Article  CAS  PubMed  Google Scholar 

  6. Bromberg SK, Schwalb MN (1977) Isolation and characterization of temperature sensitive sporulationless mutants of the basidiomycete Schizophyllum commune. Can J Genet Cytol 19:477–481

    Article  Google Scholar 

  7. Chen WM, Chai HM, Zhou HM, Tian GT, Li SH, Zhao YC (2012) Phylogenetic analysis of the Agrocybe aegerita multispecies complex in southwest China inferred from ITS and mtSSU rDNA sequences and mating tests. Ann Microbiol 4:1791–1801

    Article  Google Scholar 

  8. Clot F, Grabli D, Cazeneuve C (2009) Exhaustive analysis of BH4 and dopamine biosynthesis genes in patients with Dopa-responsive dystonia. Brain 132:1753–1763

    Article  PubMed  Google Scholar 

  9. Day PR (1959) A cytoplasmically controlled abnormality of the tetrads of Coprinus lagopus. Heredity 13:81–87

    Article  Google Scholar 

  10. Gibbins AM, Lu BC (1982) An ameiotic mutant Coprinus cinereus halted prior to premeiotic S-phase. Curr Genet 5:119–126

    Article  Google Scholar 

  11. Hasebe K, Murakami S, Tsuneda A (1991) Cytology and genetics of a sporeless mutant of Lentinus edodes. Mycologia 83:354–359

    Article  Google Scholar 

  12. Hibbett DS, Donoghue MJ (1996) Implication of phylogenetic studies for conservation of genetic diversity in Shiitake mushrooms. Conserv Biol 10:1321–1327

    Article  Google Scholar 

  13. Kanda T, Goto A, Sawa K, Arakawa H, Yasuda Y, Takemaru T (1989) Isolation and characterization of recessive sporeless mutants in the basidiomycete Coprinus cinereus. Mol Genet Genom 216:526–529

    Article  Google Scholar 

  14. Kanda T, Ishikawa T (1986) Isolation of recessive developmental mutants in Coprinus cinereus. J Gen Appl Microbiol 32:541–543

    Article  CAS  Google Scholar 

  15. Mikosch TSP, Sonnenberg ASM, Van Griensven LJLD (2001) Isolation, characterization, and expression patterns of a DMC1 homolog from the basidiomycete Pleurotus ostreatus. Fungal Genet Biol 33:59–66

    Article  CAS  PubMed  Google Scholar 

  16. Mikosch TSP, Sonnenberg ASM, Van Griensven LJLD (2002) Isolation, characterization and expression patterns of a RAD51 ortholog from Pleurotus ostreatus. Mycol Res 106:682–687

    Article  CAS  Google Scholar 

  17. Muraguchi H, Takemaru T, Kamada T (1999) Isolation and characterization of developmental variants in fruiting using a homokaryotic fruiting strain of Coprinus cinereus. Mycoscience 40:227–233

    Article  Google Scholar 

  18. Murakami S (1993) Genetics and breeding of spore deficient strains in Agrocybe cylindracea and Lentinus edodes. In: Chang ST, Buswell AB, Chiu SW (eds) Mushroom biology and mushroom products. The Chinese University Press, Hong Kong, pp 63–69

    Google Scholar 

  19. Murakami S (1998) Cytology of sporeless mutants of Agrocybe cylindracea. Rep Tottori Mycol Inst 36:29–35

    Google Scholar 

  20. Obatake Y, Murakami S, Matsumoto T, Fukumasa-Nakai Y (2003) Isolation and characterization of a sporeless mutant in Pleurotus eryngii. Mycoscience 44:33–40

    Article  Google Scholar 

  21. Obatake Y, Murakami S, Matsumoto T, Fukumasa-Nakai Y (2006) Development of a sporeless strain of Pleurotus eryngii (In Japanese). Nihon Kingakkai Nishinihon Shibukaiho 15:18–27

    Google Scholar 

  22. Ohira I (1979) Sporulation-deficient mutant in Pleurotus pulmonarius Fr. Trans Mycol Soc Jpn 20:107–114

    Google Scholar 

  23. Okuda Y, Murakami S, Matsumoto T (2009) A genetic linkage map of Pleurotus pulmonarius based on AFLP markers, and localization of the gene region for the sporeless mutation. Genome 52:438–446

    Article  CAS  PubMed  Google Scholar 

  24. Okuda Y, Murakami S, Matsumoto T (2009) Development of STS markers suitable for marker-assisted selection of sporeless trait in oyster mushroom, Pleurotus pulmonarius. Breed Sci 59:315–319

    Article  CAS  Google Scholar 

  25. Okuda Y, Murakami S, Matsumoto T (2013) An MSH4 homolog, stpp1, from Pleurotus pulmonarius is a “silver bullet” for resolving problems caused by spores in cultivated mushrooms. Appl Environ Microbiol 79:4520–4527

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Pandey M, Ravishankar S (2010) Development of sporeless and low-spored mutants of edible mushroom for alleviating respiratory allergies. Curr Sci 99:1449–1453

    Google Scholar 

  27. Ravishankar S, Pandey M, Tewari RP, Krishna V (2006) Development of sporeless/low sporing strains of Pleurotus through mutation. World J Microb Biot 22:1021–1025

    Article  Google Scholar 

  28. Sakula A (1967) Mushroom-worker’s lung. Brit Med J 16:708–710

    Google Scholar 

  29. Tani K, Kuroiwa T, Takemaru T (1977) Cytological studies on sporeless mutant in the basidiomycete Coprinus macrorhizus. Bot Mag Tokyo 90:235–245

    Article  Google Scholar 

  30. Verna J, Lodder A, Lee K, Vagts A, Ballester R (1997) A family of genes required for maintenance of cell wall integrity and for the stress response in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 94:13804–13809

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Vos P, Hogers R, Bleeker M, Reijans M, Vandelee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP-A new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Xu XZ, Xia DP (1997) A study on mutation breeding of high yield and sporless Pleurotus ostreatus by UV radiation of protoplast (In Chinese). Acta Edulis Fungi 4:11–15

    Google Scholar 

  33. Yu ML, Chang ST (1989) Mutants of Pleurotus florida deficient in sporulation. MIRCEN J 5:487–492

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported financially by the National Natural Science Foundation Program of PR China (NSFC31101591, NSFC31360024); China Agriculture Research System (CARS-24); Yunnan Provincial Fund for Applied Basic Researches (No. 2011FZ214).

Conflict of interest

All authors declare that we have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-Chang Zhao.

Additional information

Wei-Min Chen and Xiao-Lei Zhang contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLS 66 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, WM., Zhang, XL., Chai, HM. et al. Comparative Analysis of Sporulating and Spore-Deficient Strains of Agrocybe salicacola Based on the Transcriptome Sequences. Curr Microbiol 71, 204–213 (2015). https://doi.org/10.1007/s00284-015-0819-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-015-0819-5

Keywords

Navigation