Skip to main content
Log in

Mycobacterium smegmatis MSMEG_3705 Encodes a Selective Major Facilitator Superfamily Efflux Pump with Multiple Roles

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Mycobacterium smegmatis mc2155 MSMEG_3705 gene was annotated to encode a transporter protein that contains 12 alpha-helical transmembrane domains. We predicted MSMEG_3705 encoding a major facilitator superfamily (MFS) member. To confirm the prediction, the M. smegmatis mc2155 MSMEG_3705 gene was deleted. The MSMEG_3705 deletion mutant strain M. smegmatis mc2155 ∆MSMEG_3705 was more sensitive to capreomycin. Moreover, M. smegmatis mc2155 ∆MSMEG_3705 strain accumulated more ethidium bromide intracellular than wild-type M. smegmatis mc2155. Quite unexpectedly, M. smegmatis mc2155 ∆MSMEG_3705 grew faster than the wild-type M. smegmatis mc2155. The upregulation of the expression of MSMEG_3706, a gene encoding isocitrate lyase downstream MSMEG_3705, in the deletion mutant, might underlie such faster growth in the mutant. The study showed that MSMEG_3705 encodes a genuine MFS member and plays significant role in bacterial growth and antibiotics resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Blount ZD, Barrick JE, Davidson CJ, Lenski RE (2012) Genomic analysis of a key innovation in an experimental Escherichia coli population. Nature 489:513–518

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Bowman J, Ghosh P (2014) A complex regulatory network controlling intrinsic multidrug resistance in Mycobacterium smegmatis. Mol Microbiol 91:121–134

    Article  CAS  PubMed  Google Scholar 

  3. Cascioferro A, Boldrin F, Serafini A, Provvedi R, Palu G, Manganelli R (2010) Xer site-specific recombination, an efficient tool to introduce unmarked deletions into mycobacteria. Appl Environ Microbiol 76:5312–5316

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Dawson RJ, Locher KP (2006) Structure of a bacterial multidrug ABC transporter. Nature 443:180–185

    Article  CAS  PubMed  Google Scholar 

  5. Floyd JL, Smith KP, Kumar SH, Floyd JT, Varela MF (2010) LmrS is a multidrug efflux pump of the major facilitator superfamily from Staphylococcus aureus. Antimicrob Agents Chemother 54:5406–5412

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Ginn SL, Brown MH, Skurray RA (1997) Membrane topology of the metal-tetracycline/H+ antiporter TetA(K) from Staphylococcus aureus. J Bacteriol 179:3786–3789

    PubMed Central  CAS  PubMed  Google Scholar 

  7. Haydon MJ, Cobbett CS (2007) A novel major facilitator superfamily protein at the tonoplast influences zinc tolerance and accumulation in Arabidopsis. Plant Physiol 143:1705–1719

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Hirai T, Heymann JA, Maloney PC, Subramaniam S (2003) Structural model for 12-helix transporters belonging to the major facilitator superfamily. J Bacteriol 185:1712–1718

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Jack DL, Yang NM, Saier MH Jr (2001) The drug/metabolite transporter superfamily. Eur J Biochem 268:3620–3639

    Article  CAS  PubMed  Google Scholar 

  10. Jernaes MW, Steen HB (1994) Staining of Escherichia coli for flow cytometry: influx and efflux of ethidium bromide. Cytometry 17:302–309

    Article  CAS  PubMed  Google Scholar 

  11. Kuroda T, Tsuchiya T (2009) Multidrug efflux transporters in the MATE family. Biochim Biophys Acta 1794:763–768

    Article  CAS  PubMed  Google Scholar 

  12. Li XZ, Zhang L, Nikaido H (2004) Efflux pump-mediated intrinsic drug resistance in Mycobacterium smegmatis. Antimicrob Agents Chemother 48:2415–2423

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Lorenz MC, Fink GR (2002) Life and death in a macrophage: role of the glyoxylate cycle in virulence. Eukaryot Cell 1:657–662

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Lubelski J, Konings WN, Driessen AJ (2007) Distribution and physiology of ABC-type transporters contributing to multidrug resistance in bacteria. Microbiol Mol Biol Rev 71:463–476

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Maeda T, Wachi M (2012) 3′ Untranslated region-dependent degradation of the aceA mRNA, encoding the glyoxylate cycle enzyme isocitrate lyase, by RNase E/G in Corynebacterium glutamicum. Appl Environ Microbiol 78:8753–8761

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Maloney PC (1992) The molecular and cell biology of anion transport by bacteria. BioEssays 14:757–762

    Article  CAS  PubMed  Google Scholar 

  17. Morita Y, Kodama K, Shiota S, Mine T, Kataoka A, Mizushima T, Tsuchiya T (1998) NorM, a putative multidrug efflux protein, of Vibrio parahaemolyticus and its homolog in Escherichia coli. Antimicrob Agents Chemother 42:1778–1782

    PubMed Central  CAS  PubMed  Google Scholar 

  18. Pao SS, Paulsen IT, Saier MH Jr (1998) Major facilitator superfamily. Microbiol Mol Biol Rev 62:1–34

    PubMed Central  CAS  PubMed  Google Scholar 

  19. Prasad Maharjan R, Yu PL, Seeto S, Ferenci T (2005) The role of isocitrate lyase and the glyoxylate cycle in Escherichia coli growing under glucose limitation. Res Microbiol 156:178–183

    Article  CAS  PubMed  Google Scholar 

  20. Reyrat JM, Kahn D (2001) Mycobacterium smegmatis: an absurd model for tuberculosis? Trends Microbiol 9:472–474

    Article  CAS  PubMed  Google Scholar 

  21. Rodrigues L, Ramos J, Couto I, Amaral L, Viveiros M (2011) Ethidium bromide transport across Mycobacterium smegmatis cell-wall: correlation with antibiotic resistance. BMC Microbiol 11:35

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Rotem D, Schuldiner S (2004) EmrE, a multidrug transporter from Escherichia coli, transports monovalent and divalent substrates with the same stoichiometry. J Biol Chem 279:48787–48793

    Article  CAS  PubMed  Google Scholar 

  23. Sacha, P., Wieczorek, P., Ojdana, D., Hauschild, T., Milewski, R., Czaban, S., Poniatowski, B. & Tryniszewska, E. (2014). Expression of MexAB-OprM efflux pump system and susceptibility to antibiotics of different Pseudomonas aeruginosa clones isolated from patients hospitalized in two intensive care units at University Hospital in Bialystok (northeastern Poland) between January 2002 and December 2009. APMIS.

  24. Smith KP, Kumar S, Varela MF (2009) Identification, cloning, and functional characterization of EmrD-3, a putative multidrug efflux pump of the major facilitator superfamily from Vibrio cholerae O395. Arch Microbiol 191:903–911

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Sonden B, Kocincova D, Deshayes C et al (2005) Gap, a mycobacterial specific integral membrane protein, is required for glycolipid transport to the cell surface. Mol Microbiol 58:426–440

    Article  CAS  PubMed  Google Scholar 

  26. Takiff HE, Cimino M, Musso MC, Weisbrod T, Martinez R, Delgado MB, Salazar L, Bloom BR, Jacobs WR Jr (1996) Efflux pump of the proton antiporter family confers low-level fluoroquinolone resistance in Mycobacterium smegmatis. Proc Natl Acad Sci USA 93:362–366

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  CAS  PubMed  Google Scholar 

  28. Tanabe M, Szakonyi G, Brown KA, Henderson PJ, Nield J, Byrne B (2009) The multidrug resistance efflux complex, EmrAB from Escherichia coli forms a dimer in vitro. Biochem Biophys Res Commun 380:338–342

    Article  CAS  PubMed  Google Scholar 

  29. Tseng TT, Gratwick KS, Kollman J, Park D, Nies DH, Goffeau A, Saier MH Jr (1999) The RND permease superfamily: an ancient, ubiquitous and diverse family that includes human disease and development proteins. J Mol Microbiol Biotechnol 1:107–125

    CAS  PubMed  Google Scholar 

  30. Vecchione JJ, Alexander B Jr, Sello JK (2009) Two distinct major facilitator superfamily drug efflux pumps mediate chloramphenicol resistance in Streptomyces coelicolor. Antimicrob Agents Chemother 53:4673–4677

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Webber MA, Piddock LJ (2003) The importance of efflux pumps in bacterial antibiotic resistance. J Antimicrob Chemother 51:9–11

    Article  CAS  PubMed  Google Scholar 

  32. Yamaguchi A, Shiina Y, Fujihira E, Sawai T, Noguchi N, Sasatsu M (1995) The tetracycline efflux protein encoded by the tet(K) gene from Staphylococcus aureus is a metal-tetracycline/H+ antiporter. FEBS Lett 365:193–197

    Article  CAS  PubMed  Google Scholar 

  33. Yan N (2013) Structural advances for the major facilitator superfamily (MFS) transporters. Trends Biochem Sci 38:151–159

    Article  CAS  PubMed  Google Scholar 

  34. Yin Y, He X, Szewczyk P, Nguyen T, Chang G (2006) Structure of the multidrug transporter EmrD from Escherichia coli. Science 312:741–744

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work is supported by National Natural Science Foundation (Grant Numbers 81371851, 81071316, 81271882, 81301394), New Century Excellent Talents in Universities (Grant Number NCET-11-0703), National Megaprojects for Key Infectious Diseases (Grant Number 2008ZX10003-006), Excellent PhD thesis fellowship of Southwest University (Grant Numbers kb2010017, ky2011003), the Fundamental Research Funds for the Central Universities (Nos. XDJK2011D006, XDJK2012D011, XDJK2012D007, XDJK2013D003 and XDJK2014D040), Natural Science Foundation Project of CQ CSTC (Grant Number CSTC 2010BB5002), The Chongqing municipal committee of Education for postgraduates excellence program (No.YJG123104), and the undergraduates teaching reform program (No. 2013JY201).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianping Xie.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Wang, R. & Xie, J. Mycobacterium smegmatis MSMEG_3705 Encodes a Selective Major Facilitator Superfamily Efflux Pump with Multiple Roles. Curr Microbiol 70, 801–809 (2015). https://doi.org/10.1007/s00284-015-0783-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-015-0783-0

Keywords

Navigation