Skip to main content
Log in

Identification, cloning, and functional characterization of EmrD-3, a putative multidrug efflux pump of the major facilitator superfamily from Vibrio cholerae O395

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

A putative multidrug efflux pump, EmrD-3, belonging to the major facilitator superfamily (MFS) of transporters and sharing homology with the Bcr/CflA subfamily, was identified in Vibrio cholerae O395. We cloned the emrD-3 gene and evaluated its role in antimicrobial efflux in a hypersensitive Escherichia coli strain. The efflux activity of this membrane protein resulted in lowering the intracellular concentration of ethidium. The recombinant plasmid carrying emrD-3 conferred enhanced resistance to several antimicrobials. Among the antimicrobials tested, the highest relative increase in minimum inhibitory concentration (MIC) of 102-fold was observed for linezolid (MIC = 256 μg/ml), followed by an 80.1-fold increase for tetraphenylphosphonium chloride (TPCL) (156.2 μg/ml), 62.5-fold for rifampin (MIC = 50 μg/ml), >30-fold for erythromycin (MIC = 50 μg/ml) and minocycline (MIC = 2 μg/ml), 20-fold for trimethoprim (MIC = 0.12 μg/ml), and 18.7-fold for chloramphenicol (MIC = 18.7 μg/ml). Among the fluorescent DNA-binding dyes, the highest relative increase in MIC of 41.7-fold was observed for ethidium bromide (125 μg/ml) followed by a 17.2-fold increase for rhodamine 6G (100 μg/ml). Thus, we demonstrate that EmrD-3 is a multidrug efflux pump of V. cholerae, the homologues of which are present in several Vibrio spp., some members of Enterobacteriaceae family, and Gram-positive Bacillus spp.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  CAS  PubMed  Google Scholar 

  • Ausubel FM, Brent R, Kingsten RE, Moore DD, Seidman JG, Smith JA, Struhl K (1995) Short protocols in molecular biology, 3rd edn. Wiley, New York

    Google Scholar 

  • Begum A, Rahman MM, Ogawa W, Mizushima T, Kuroda T, Tsuchiya T (2005) Gene cloning and characterization of four MATE family multidrug efflux pumps from Vibrio cholerae non-O1. Microbiol Immunol 49:949–957

    CAS  PubMed  Google Scholar 

  • Bina XR, Provenzano D, Nguyen N, Bina JE (2008) Vibrio cholerae RND family efflux systems are required for antimicrobial resistance, optimal virulence factor production, and colonization of the infant mouse small intestine. Infect Immun 76:3595–3605

    Article  CAS  PubMed  Google Scholar 

  • Bohnert JA, Kern WV (2005) Selected arylpiperazines are capable of reversing multidrug resistance in Escherichia coli overexpressing RND efflux pumps. Antimicrob Agents Chemother 49:849–852

    Article  CAS  PubMed  Google Scholar 

  • Buysse JM, Demyan WF, Dunyak DS, Stapert D, Hamel JC, Ford CW (1996) Mutation of the AcrAB antibiotic efflux pump in Escherichia coli confers susceptibility to oxazolidinone antibiotics [abstract C42] In: Program and abstracts of the 36th Interscience Conference on Antimicrobial Agents and Chemotherapy (New Orleans).Washington, DC. American Society for Microbiology, 41

  • Clinical and Laboratory Standards Institute (CLSI) (2006) Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. Approved standard-seventh edition CLSI document M7-A7, Vol 26, No. 2

  • Dalsgaard A, Forslund A, Petersen A, Brown DJ, Dias F, Monteiro S, Molbak K, Aaby P, Rodrigues A, Sandström A (2000) Class 1 integron-borne, multiple-antibiotic resistance encoded by a 150-kilobase conjugative plasmid in epidemic Vibrio cholerae O1 strains isolated in Guinea-Bissau. J Clin Microbiol 38:3774–3779

    CAS  PubMed  Google Scholar 

  • Edgar R, Bibi E (1997) MdfA, an Escherichia coli multidrug resistance protein with an extraordinarily broad spectrum of drug recognition. J Bacteriol 179:2274–2280

    CAS  PubMed  Google Scholar 

  • Faruque SM, Albert MJ, Mekalanos JJ (1998) Epidemiology, genetics, and ecology of toxigenic Vibrio cholerae. Microbiol Mol Biol Rev 62:1092–2172

    Google Scholar 

  • Feng J, Lupien A, Gingras H, Wasserscheid J, Dewar K, Légaré D, Ouellette M (2009) Genome sequencing of linezolid-resistant Streptococcus pneumoniae mutants reveals novel mechanisms of resistance. Genome Res 19:1214–1223

    Article  CAS  PubMed  Google Scholar 

  • Ginn SL, Brown MH, Skurray RA (2000) The TetA(K) tetracycline/H(+) antiporter from Staphylococcus aureus: mutagenesis and functional analysis of motif C. J Bacteriol 82:1492–1498

    Article  Google Scholar 

  • Gonzales RD, Schreckenberger PC, Graham MB, Kelkar S, DenBesten K, Quinn JP (2001) Infections due to vancomycin-resistant Enterococcus faecium resistant to linezolid. Lancet 357:1179

    Article  CAS  PubMed  Google Scholar 

  • Griffith JK, Baker ME, Rouch DA, Page MGP, Skurray RA, Paulsen IT, Chater KF, Baldwin SA, Henderson PJF (1992) Membrane transport proteins: implications of sequence comparisons. Curr Opin Cell Biol 4:684–695

    Article  CAS  PubMed  Google Scholar 

  • Grkovic S, Brown MH, Skurray RA (2002) Regulation of bacterial drug export systems. Microbiol Mol Biol Rev 66:671–701

    Article  CAS  PubMed  Google Scholar 

  • Hayes JD, Wolf CR (1990) Molecular mechanisms of drug resistance. Biochem J 272:281–295

    CAS  PubMed  Google Scholar 

  • Higgins CF (2007) Multiple molecular mechanisms for multidrug resistance transporters. Nature 446:749–757

    Article  CAS  PubMed  Google Scholar 

  • Higgins D, Thompson J, Gibson T, Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  PubMed  Google Scholar 

  • Hirai T, Jurgen A, Heymann W, Maloney PC, Subramaniam S (2003) Structural model for 12-helix transporters belonging to the major facilitator superfamily. J Bacteriol 185:1712–1718

    Article  CAS  PubMed  Google Scholar 

  • Hirata T, Saito A, Nishino K, Tamura N, Yamaguchi A (2004) Effects of efflux transporter genes on susceptibility of Escherichia coli to tigecycline (GAR-936). Antimicrob Agents Chemother 48:2179–2184

    Article  CAS  PubMed  Google Scholar 

  • Jin J, Guffanti AA, Bechhofer DH, Krulwich TA (2002) Tet(L) and Tet(K) tetracycline-divalent metal/H+ antiporters: characterization of multiple catalytic modes and a mutagenesis approach to differences in their efflux substrate and coupling ion preferences. J Bacteriol 184:4722–4732

    Article  CAS  PubMed  Google Scholar 

  • Krieg PA, Melton DA (1987) In vitro RNA synthesis with SP6 RNA polymerase. Methods Enzymol 155:97–415

    Google Scholar 

  • Law CJ, Maloney PC, Wang D (2008) Ins and outs of major facilitator superfamily antiporters. Ann Rev Microbiol 62:289–305

    Article  CAS  Google Scholar 

  • Lewis K (1994) Multidrug resistance pumps in bacteria: variations on a theme. Trends Biochem Sci 19:119–123

    Article  CAS  PubMed  Google Scholar 

  • Maiden MC, Davis EO, Baldwin SA, Moore DC, Henderson PJ (1987) Mammalian and bacterial sugar transport proteins are homologous. Nature 325:641–643

    Article  CAS  PubMed  Google Scholar 

  • McMurry L, George AM, Levy SB (1994) Active efflux of chloramphenicol in susceptible Escherichia coli strains and in multiple-antibiotic-resistant (Mar) mutants. Antimicrob Agents Chemother 38:542–546

    CAS  PubMed  Google Scholar 

  • Meka VG, Pillai SK, Sakoulas G, Wennersten C, Venkataraman L, DeGirolami PC, Eliopoulos GM, Moellering RC Jr, Gold HS (2004) Linezolid resistance in sequential Staphylococcus aureus isolates associated with a T2500A mutation in the 23S rRNA gene and loss of a single copy of rRNA. J Infect Dis 190:311–317

    Article  CAS  PubMed  Google Scholar 

  • Minato Y, Shahcheraghi F, Ogawa W, Kuroda T, Tsuchiya T (2008) Functional gene cloning and characterization of the SsmE multidrug efflux pump from Serratia marcescens. Biol Pharm Bull 31:516–519

    Article  CAS  PubMed  Google Scholar 

  • Mine T, Morita Y, Kataoka A, Mizushima T, Tsuchiya T (1998) Evidence for chloramphenicol/H+ antiport in Cmr (MdfA) system of Escherichia coli and properties of the antiporter. J Biochem 124:187–193

    CAS  PubMed  Google Scholar 

  • Mine T, Morita Y, Kataoka A, Mizushima T, Tsuchiya T (1999) Expression in Escherichia coli of a new multidrug efflux pump, MexXY, from Pseudomonas aeruginosa. Antimicrob Agents Chemother 43:415–417

    Article  CAS  PubMed  Google Scholar 

  • Moreira MAS, Souza EC, Moraes CA (2004) Multidrug efflux systems in gram-negative bacteria. Braz J Microbiol 35:19–28

    Article  CAS  Google Scholar 

  • Mutnick AH, Enne V, Jones RN (2003) Linezolid resistance since 2001: SENTRY antimicrobial surveillance program. Ann Pharmacother 37:769–774

    Article  CAS  PubMed  Google Scholar 

  • Mwansa JC, Mwaba J, Lukwesa C, Bhuiyan NA, Ansaruzzaman M, Ramamurthy T, Alam M, Balakrish Nair G (2007) Multiply antibiotic-resistant Vibrio cholerae O1 biotype El Tor strains emerge during cholera outbreaks in Zambia. Epidemiol Infect 135:847–853

    Article  CAS  PubMed  Google Scholar 

  • Okuso H, Ma D, Nikaido H (1996) AcrAB efflux plays a major role in the antibiotic resistance phenotype of Escherichia coli multiple-antibiotic-resistance (Mar) mutants. J Bacteriol 178:306–308

    Google Scholar 

  • Otsuka M, Yasuda M, Morita Y, Otsuka C, Tsuchiya T, Omote H, Moriyama Y (2005) Identification of essential amino acid residues of the NorM Na +/multidrug antiporter in Vibrio parahaemolyticus. J Bacteriol 187:1552–1558

    Article  CAS  PubMed  Google Scholar 

  • Padan E, Schuldiner S (1994) Molecular biology of Na+/H+ antiporters: molecular devices that couple the Na+ and H+ circulation in cells. Biochim Biophys Acta 1187:206–210

    Article  CAS  PubMed  Google Scholar 

  • Pao SS, Paulsen IT, Saier MH (1998) Major facilitator superfamily. Microbiol Mol Biol Rev 62:1–34

    CAS  PubMed  Google Scholar 

  • Pasrija R, Banerjee D, Prasad R (2007) Structure and function analysis of CaMdr1p, a MFS antifungal efflux transporter protein of Candida albicans: identification of amino acid residues critical for drug/H+ transport. Eukaryot Cell 6:443–453

    Article  CAS  PubMed  Google Scholar 

  • Putman M, van Veen HW, Konings WN (2000) Molecular properties of bacterial multidrug transporters. Microbiol Mol Biol Rev 64:672–693

    Article  CAS  PubMed  Google Scholar 

  • Rahman MM, Matsuo T, Ogawa W, Koterasawa M, Kuroda T, Tsuchiya T (2007) Molecular cloning and characterization of all RND-type efflux transporters in Vibrio cholerae non-O1. Microbiol Immunol 51:1061–1070

    CAS  PubMed  Google Scholar 

  • Roberts CM (2008) Update on macrolide-lincosamide-streptogramin, ketolide and oxazolidinone resistance genes. FEMS Microbiol Lett 282:147–159

    Article  CAS  PubMed  Google Scholar 

  • Rubin EJ, Lin W, Mekalanos JJ, Waldor MK (1998) Replication and integration of a Vibrio cholerae cryptic plasmid linked to the CTX prophage. Mol Microbiol 28:1247–1254

    Article  CAS  PubMed  Google Scholar 

  • Sander P, Belova L, Kidan YG, Pfister P, Mankin AS, Böttger EC (2002) Ribosomal and non-ribosomal resistance to oxazolidinones: species-specific idiosyncrasy of ribosomal alterations. Mol Microbiol 46:1295–1304

    Article  CAS  PubMed  Google Scholar 

  • Slatter JG, Stalker DJ, Feenstra KL, Welshman IR, Bruss JB, Sams JP, Johnson MG, Sanders PE, Hauer MJ, Fagerness PE, Stryd RP, Peng GW, Shobe EM (2001) Pharmacokinetics, metabolism and excretion of linezolid following an oral dose of 14C linezolid to healthy human subjects. Drug Metab Dispos 29:1136–1145

    CAS  PubMed  Google Scholar 

  • Swaney SM, Aoki H, Ganoza MC, Shinabarger DL (1998) The oxazolidinone linezolid inhibits initiation of protein synthesis in bacteria. Antimicrob Agents Chemother 42:3251–3255

    CAS  PubMed  Google Scholar 

  • Tsiodras S, Gold HS, Sakoulas G, Eliopoulos GM, Wennersten C, Venkataraman L, Moellering RC, Ferraro MJ (2001) Linezolid resistance in a clinical isolate of Staphylococcus aureus. Lancet 358:207–208

    Article  CAS  PubMed  Google Scholar 

  • Van Veen HW, Konings WN (1998) Structure and function of multidrug transporters. Adv Exp Med Biol 456:145–158

    PubMed  Google Scholar 

  • Varela MF, Wilson TH (1996) Molecular biology of the lactose carrier of Escherichia coli. Biochim Biophys Acta 1276:21–34

    Article  PubMed  Google Scholar 

  • Varela MF, Sansom CE, Griffith JK (1995) Mutational analysis and molecular modelling of an amino acid sequence motif conserved in antiporters but not symporters in a transporter superfamily. Mol Membr Biol 12:313–319

    Article  CAS  PubMed  Google Scholar 

  • Woolley RC, Vediyappan G, Anderson M, Lackey M, Ramasubramanian B, Jiangping B, Borisova T, Colmer JA, Hamood AN, McVay CS, Fralick JA (2005) Characterization of the Vibrio cholerae vceCAB multiple-drug resistance efflux operon in Escherichia coli. J Bacteriol 187:5500–5503

    Article  CAS  PubMed  Google Scholar 

  • Xiong L, Kloss P, Douthwaite S, Andersen NM, Swaney S, Shinabarger DL, Mankin AS (2000) Oxazolidinone resistance mutations in 23S rRNA of Escherichia coli reveal the central region of domain V as the primary site of drug action. J Bacteriol 182:5325–5331

    Article  CAS  PubMed  Google Scholar 

  • Zhong P, Shortridge VD (2000) The role of efflux in macrolide resistance. Drug Resist Updates 3:325–329

    Article  CAS  Google Scholar 

  • Zurenko GE, Yagi BH, Schaadt RD, Allison JW, Kilburn JO, Glickman SE, Hutchinson DK, Barbachyn MR, Brickner SJ (1996) In vitro activities of U-100592 and U-100766, novel oxazolidinone antibacterial agents. Antimicrob Agents Chemother 40:839–845

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was made possible by NIH Grants 1 R15 GM070562-04 and 2 P20 RR016480-09, the latter of which is from the NM-INBRE program of the National Center for Research Resources, a contribution from Calton Research Associates in honor of George and Clytie Calton, and an Internal Research Grant awarded by Eastern New Mexico University. We thank Dr. Jeffrey K. Griffith (University of New Mexico, Albuquerque, NM) and Dr. Thomas H. Wilson (Harvard Medical School, Boston, MA) for helpful comments. We thank Dr. Tomofusa Tsuchiya (Laboratory of Molecular Microbiology, University of Okayama, Japan) for E. coli strain KAM32, and Dr. Chythanya Rajanna (Emerging Pathogens Institute, Gainesville, FL) for Vibrio cholerae O395.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel F. Varela.

Additional information

Communicated by Jorge Membrillo-Hernández.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smith, K.P., Kumar, S. & Varela, M.F. Identification, cloning, and functional characterization of EmrD-3, a putative multidrug efflux pump of the major facilitator superfamily from Vibrio cholerae O395. Arch Microbiol 191, 903–911 (2009). https://doi.org/10.1007/s00203-009-0521-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-009-0521-8

Keywords

Navigation