Skip to main content
Log in

Potential of Siderophore Production by Bacteria Isolated from Heavy Metal: Polluted and Rhizosphere Soils

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Recently, heavy metals have been shown to have a stimulating effect on siderophore biosynthesis in various bacteria. In addition, several studies have found that siderophore production is greater in bacteria isolated from soil near plant roots. The aim of this study was to compare the production of siderophores by bacterial strains isolated from heavy metal-contaminated and uncontaminated soils. Chrome azurol sulphonate was used to detect siderophore secretion by several bacterial strains isolated from heavy metal-contaminated and rhizosphere-uncontaminated soils with both a qualitative disc diffusion method and a quantitative ultraviolet spectrophotometric method. Siderophore production by rhizosphere bacteria was significantly greater than by bacteria isolated from contaminated soil. The Pearson’s correlation test indicated a positive correlation between the amount of siderophore produced by bacteria isolated from the rhizosphere using the quantitative and qualitative detection methods and the amount of heavy metal in the soil. However, a significant negative correlation was observed between the amount of siderophore produced by bacteria isolated from heavy metal-contaminated soil and the amount of heavy metal (r value of −0.775, P < 0.001).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Abou-Shanab RI, Delorme TA, Angle JS, Chaney RL, Ghanem K, Moawad H, Ghozlan HA (2003) Phenotypic characterization of microbes in the rhizosphere of Alyssum murale. Int J Phytoremediation 5:367–379

    Article  CAS  PubMed  Google Scholar 

  2. Anderson TA, Guthrie EA, Walton BT (1993) Bioremediation. Environ Sci Technol 27:2631–2636

    Article  Google Scholar 

  3. Antoun H, Kloepper JW (2001) Plant growth promoting rhizobacteria. In: Brenner S, Miller JF (eds) Encyclopedia of genetics. Academic Press, London, pp 1477–1480

    Chapter  Google Scholar 

  4. Barzanti R, Ozino F, Bazzicalupo M, Gabbrielli R, Galardi F, Gonnelli C, Mengoni A (2007) Isolation and characterization of endophytic bacteria from the nickel hyperaccumulator plant Alyssum bertolonii. Microb Ecol 53:306–316

    Article  CAS  PubMed  Google Scholar 

  5. Barriuso J, Ramos B, Lucas JA, Probanza A, García-Villaraco A, Gutiérrez MF (2008) Ecology, genetic diversity and screening strategies of plant growth promoting rhizobacteria (PGPR). In: Ahmad I, Pichtel J, Hayat S (eds.) Plant–bacteria interactions: strategies and techniques to promote plant growth. Wiley VCH Publisher, Weinheim, pp 1–17

  6. Belimov AA, Hontzeas N, Safronova VI, Demchinskaya SV, Piluzza G, Bullitta S, Glick BR (2005) Cadmium-tolerant plant growth- promoting bacteria associated with the roots of Indian mustard (Brassica juncea L. Czern.). Soil Biol Biochem 37:241–250

    Article  CAS  Google Scholar 

  7. Budzikiewicz H (1993) Secondary metabolites from fluorescent pseudomonads. Microbiol Rev 104:209–228

    CAS  Google Scholar 

  8. Dell’Amico E, Cavalca L, Andreoni V (2005) Analysis of rhizobacterial communities in perennial Graminaceae from polluted water meadow soil, and screening of metal-resistant, potentially plant growth-promoting bacteria. FEMS Microbiol Ecol 52:153–162

    Article  CAS  PubMed  Google Scholar 

  9. Dimkpa CO, McLean JE, Britt DW, Anderson AJ (2012) CuO and ZnO nanoparticles differently affect the secretion of fluorescent siderophores in the beneficial root colonizer Pseudomonas chlororaphis O6. Nanotoxicology 6:635–642

    Article  CAS  PubMed  Google Scholar 

  10. Dimkpa CO, Svatoš A, Dabrowska P, Schmidt A, Boland W, Kothe E (2008) Involvement of siderophores in the reduction of metal-induced inhibition of auxin synthesis in Streptomyces spp. Chemosphere 74:19–25

    Article  CAS  PubMed  Google Scholar 

  11. Elad Y, Baker R (1985) The role of competition for iron and carbon in suppression of chlamydospore germination of Fusarium oxysporum. Phytopathology 75:190–195

    Article  Google Scholar 

  12. Elad Y, Chet I (1987) Possible role of competition for nutrition in biocontrol of Pythium damping-off by bacteria. Phytopathology 77:190–195

    Article  Google Scholar 

  13. Hiltner L (1904) Über neuere Erfahrungen und Probleme auf dem Gebiete der Bodenbakteriologie unter besonderer Berücksichtigung der Gründüngung und Brache. Arb Dtsch Landwirtsch Ges 98:59–78

    Google Scholar 

  14. Hofte M, Dong Q, Kourambos S, Krishnapillai V, Sherratt D, Mergeay M (1994) The sss gene product, which affects pyoverdin production in Pseudomonas aeruginosa 7NSK2, is a site-specific recombinase. Mol Microbiol 14:1011–1020

    Article  CAS  PubMed  Google Scholar 

  15. Idris R, Trifonova R, Puschenreiter M, Wenzel WW, Sessitsch A (2004) Bacterial communities associated with flowering plants of the Ni hyperaccumulator Thlaspi goesingense. Appl Environ Microbiol 70:2667–2677

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Jing YD, He ZL, Yang XE (2007) Role of soil rhizobacteria in phytoremediation of heavy metal contaminated soils. J Zhejiang Univ Sci B 8:192–207

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Karuna G, Pal RB (2010) Siderophores and pathogenicity of microorganisms. J Biosci Tech 1:127–134

    Google Scholar 

  18. Lasat HA (2002) Phytoextraction of toxic metals: a review of biological mechanisms. J Environ Qual 31:109–120

    Article  CAS  PubMed  Google Scholar 

  19. Lemanceau P, Samson R, Alabouvette C (1988) Recherches sur la resistance des sols aux maladies. XV. Comparaison des populations de Pseudomonas fluorescents dans un sol resistant et un sol sensible aux fusarioses vasculaires. Agronomie 8:243–249

    Article  Google Scholar 

  20. Lemanceau P, Bakker P, Dekogel WJ, Alabouvette C, Schippers B (1992) Effect of pseudobactin 358 produced by Pseudomonas putida WSC358 on suppression of Fusarium wilt of carnations by non pathogenic Fusarium oxysporum. Appl Environ Microbiol 58:2978–2980

    CAS  PubMed Central  PubMed  Google Scholar 

  21. Leong J (1986) Siderophores: their biochemistry and possible role in the biocontrol of plant pathogens. Annu Rev Phytopathol 24:187–209

    Article  CAS  Google Scholar 

  22. Matzanke BF (1991) Structures, coordination chemistry and functions of microbial iron chelates. In: Winkelmann G (ed) CRC handbook of microbial iron chelates. CRC Press, Boston, pp 15–64

    Google Scholar 

  23. Matzanke BF (1994) Iron storage in fungi. In: Winklemann G, Winge D (eds) Metal ions in fungi, vol 11. Marcel Dekker Inc., New York, pp 179–214

    Google Scholar 

  24. Rajkumar M, Freitas H (2009) Endophytic bacteria and their potential to enhance heavy metal phytoextraction. Chemosphere 77:60–153

    Article  CAS  Google Scholar 

  25. SAS Institute Inc, SAS, SAS/STAT® 9.1 User’s Guide. SAS Institute Inc., Cary, NC, USA, 2004

  26. Schwyn B, Neilands JB (1987) Universal chemical assay for the detection and determination of siderophores. Anal Biochem 160:47–56

    Article  CAS  PubMed  Google Scholar 

  27. Šimon T (1999) The effect of increasing rates of nickel and arsenic on the growth of radish and soil microflora. Rostlinna Vyroba 45:421–430

    Google Scholar 

  28. Sinha S, Mukherjee SK (2008) Cadmium-induced siderophore production by a high Cd-resistant bacterial strain relieved Cd toxicity in plants through root colonization. Curr Microbiol 56:55–60

    Article  CAS  PubMed  Google Scholar 

  29. Sumner ME, Miller WP (1996) Cation exchange capacity and exchange coefficients. In: Sparks DL (ed) Methods of soil analysis. Part 3. SSSA Book, vol 5. SSSA, Madison, pp 1201–1229

    Google Scholar 

  30. U.S. Environmental Protection Agency (USEPA) (1994) Microwave assisted acid digestion of sediments, sludges, soils and oil. Method 3051

  31. Winkelmann G (2007) Ecology of siderophores with special reference to fungi. Biometals 20:379–392

    Article  CAS  PubMed  Google Scholar 

  32. Winkelmann G (1991) In: Winkelmann G (ed) Handbook of microbial iron chelates (Siderophores). CRC Press, Boca Raton

    Google Scholar 

Download references

Acknowledgments

This study was supported by the National Research Foundation of Korea Grant funded by the Korean government (Project number: NRF-2013R1A1A2011950) and also supported by Kangwon National University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin Ho Joo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hussein, K.A., Joo, J.H. Potential of Siderophore Production by Bacteria Isolated from Heavy Metal: Polluted and Rhizosphere Soils. Curr Microbiol 68, 717–723 (2014). https://doi.org/10.1007/s00284-014-0530-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-014-0530-y

Keywords

Navigation