Skip to main content

Advertisement

Log in

Mannosylated LigANI Produced in Pichia pastoris Protects Hamsters Against Leptospirosis

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

The C-terminal region of the Leptospiral immunoglobulin-like A protein (LigA) contains six carboxy-terminal Ig-like repeat domains (LigANI). Subunit vaccine preparations based on recombinant LigANI produced in Escherichia coli, are promising vaccine candidates, albeit with variable efficacy. In the present study, LigANI was expressed in the methylotrophic yeast Pichia pastoris using a 12 L bioreactor to produce mannosylated LigANI (mLigANI) for use in a vaccine preparation against leptospirosis. Hamsters immunized with a mLigANI vaccine preparation produced a significant IgG antibody response (P < 0.001) and were protected (83.3 %; P < 0.001) against lethal challenge with 36× LD50 of a virulent strain of L. interrogans serovar Copenhageni. A vaccine preparation based on demannosylated mLigANI (nmLigANI) elicited an immune response in hamsters, but did not afford protection. The production of mLigANI in bioreactor by P. pastoris yielded ~50 mg L−1 of recombinant protein. P. pastoris is a potential platform for the production of leptospiral antigens on an industrial scale. The results demonstrate that LigANI secreted by P. pastoris on mannosylated form (mLigANI) protect hamsters as subunit vaccine of L. interrogans lethal infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Adler B, de la Pena MA (2010) Leptospira and leptospirosis. Vet Microbiol 140:287–296

    Article  CAS  PubMed  Google Scholar 

  2. Bharti AR, Nally JE, Ricaldi JN et al (2003) Leptospirosis: a zoonotic disease of global importance. Lancet Infect Dis 3:757–771

    Article  PubMed  Google Scholar 

  3. McBride AJ, Athanazio DA, Reis MG et al (2005) Leptospirosis. Curr Opin Infect Dis 18:376–386

    Article  PubMed  Google Scholar 

  4. Haake DA, Dundoo M, Cader R et al (2002) Leptospirosis, water sports, and chemoprophylaxis. Clin Infect Dis 34:e40–e43

    Article  PubMed Central  PubMed  Google Scholar 

  5. Monahan AM, Miller IS, Nally JE (2009) Leptospirosis: risks during recreational activities. J Appl Microbiol 107:707–716

    Article  CAS  PubMed  Google Scholar 

  6. Reis RB, Ribeiro GS, Felzemburgh RD et al (2008) Impact of environment and social gradient on Leptospira infection in urban slums. PLoS Negl Trop Dis 2:e228

    Article  PubMed Central  PubMed  Google Scholar 

  7. WHO (2011) Leptospirosis: an emerging public health problem. Wkly Epidemiol Rec 86:45–50

    Google Scholar 

  8. Gouveia EL, Metcalfe J, de Carvalho AL et al (2008) Leptospirosis-associated severe pulmonary hemorrhagic syndrome, Salvador, Brazil. Emerg Infect Dis 14:505–508

    Article  PubMed  Google Scholar 

  9. Segura ER, Ganoza CA, Campos K et al (2005) Clinical spectrum of pulmonary involvement in leptospirosis in a region of endemicity, with quantification of leptospiral burden. Clin Infect Dis 40:343–351

    Article  PubMed Central  PubMed  Google Scholar 

  10. Faine SB, Adler B, Bolin C, Perolat P (1999) Leptospira and Leptospirosis, 2nd edn. MediSci, Melbourne

    Google Scholar 

  11. Dellagostin OA, Grassmann AA, Hartwig DD et al (2011) Recombinant vaccines against leptospirosis. Hum Vaccin 7:1215–1224

    Article  CAS  PubMed  Google Scholar 

  12. Matsunaga J, Barocchi MA, Croda J et al (2003) Pathogenic Leptospira species express surface-exposed proteins belonging to the bacterial immunoglobulin superfamily. Mol Microbiol 49:929–945

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Choy HA, Kelley MM, Chen TL et al (2007) Physiological osmotic induction of Leptospira interrogans adhesion: LigA and LigB bind extracellular matrix proteins and fibrinogen. Infect Immun 75:2441–2450

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Choy HA, Kelley MM, Croda J et al (2011) The multifunctional LigB adhesin binds homeostatic proteins with potential roles in cutaneous infection by pathogenic Leptospira interrogans. PLoS One 6:e16879

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Cerqueira GM, McBride AJ, Hartskeerl RA et al (2010) Bioinformatics describes novel Loci for high resolution discrimination of Leptospira isolates. PLoS One 5:e15335

    Article  PubMed Central  PubMed  Google Scholar 

  16. McBride AJ, Cerqueira GM, Suchard MA et al (2009) Genetic diversity of the Leptospiral immunoglobulin-like (Lig) genes in pathogenic Leptospira spp. Infect Genet Evol 9:196–205

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Koizumi N, Watanabe H (2004) Leptospiral immunoglobulin-like proteins elicit protective immunity. Vaccine 22:1545–1552

    Article  CAS  PubMed  Google Scholar 

  18. Lucas DS, Cullen PA, Lo M et al (2011) Recombinant LipL32 and LigA from Leptospira are unable to stimulate protective immunity against leptospirosis in the hamster model. Vaccine 29:3413–3418

    Article  PubMed  Google Scholar 

  19. Palaniappan RU, McDonough SP, Divers TJ et al (2006) Immunoprotection of recombinant leptospiral immunoglobulin-like protein A against Leptospira interrogans serovar Pomona infection. Infect Immun 74:1745–1750

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Silva EF, Medeiros MA, McBride AJ et al (2007) The terminal portion of leptospiral immunoglobulin-like protein LigA confers protective immunity against lethal infection in the hamster model of leptospirosis. Vaccine 25:6277–6286

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Coutinho ML, Choy HA, Kelley MM et al (2011) A LigA three-domain region protects hamsters from lethal infection by Leptospira interrogans. PLoS Negl Trop Dis 5:e1422

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Hartwig DD, Oliveira TL, Seixas FK et al (2010) High yield expression of leptospirosis vaccine candidates LigA and LipL32 in the methylotrophic yeast Pichia pastoris. Microb Cell Fact 9:98

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Cereghino GP, Cereghino JL, Ilgen C et al (2002) Production of recombinant proteins in fermenter cultures of the yeast Pichia pastoris. Curr Opin Biotechnol 13:329–332

    Article  PubMed  Google Scholar 

  24. Macauley-Patrick S, Fazenda ML, McNeil B et al (2005) Heterologous protein production using the Pichia pastoris expression system. Yeast 22:249–270

    Article  CAS  PubMed  Google Scholar 

  25. Cregg JM, Cereghino JL, Shi J et al (2000) Recombinant protein expression in Pichia pastoris. Mol Biotechnol 16:23–52

    Article  CAS  PubMed  Google Scholar 

  26. Ko AI, Galvao RM, Ribeiro Dourado CM et al (1999) Urban epidemic of severe leptospirosis in Brazil. Salvador leptospirosis study group. Lancet 354:820–825

    Article  CAS  PubMed  Google Scholar 

  27. Reed LJ (1938) A simple method of estimating fifty percent endpoints. Am J Hyg 27:493–497

    Google Scholar 

  28. Seixas FK, da Silva EF, Hartwig DD et al (2007) Recombinant Mycobacterium bovis BCG expressing the LipL32 antigen of Leptospira interrogans protects hamsters from challenge. Vaccine 26:88–95

    Article  CAS  PubMed  Google Scholar 

  29. Chagas-Junior AD, McBride AJ, Athanazio DA et al (2009) An imprint method for detecting leptospires in the hamster model of vaccine-mediated immunity for leptospirosis. J Med Microbiol 58:1632–1637

    Article  PubMed  Google Scholar 

  30. Cereghino JL, Cregg JM (2000) Heterologous protein expression in the methylotrophic yeast Pichia pastoris. FEMS Microbiol Rev 24:45–66

    Article  CAS  PubMed  Google Scholar 

  31. Faisal SM, Yan W, Chen CS et al (2008) Evaluation of protective immunity of Leptospira immunoglobulin like protein A (LigA) DNA vaccine against challenge in hamsters. Vaccine 26:277–287

    Article  CAS  PubMed  Google Scholar 

  32. Faisal SM, Yan W, McDonough SP et al (2009) Leptospira immunoglobulin-like protein A variable region (LigAvar) incorporated in liposomes and PLGA microspheres produces a robust immune response correlating to protective immunity. Vaccine 27:378–387

    Article  CAS  PubMed  Google Scholar 

  33. Palaniappan RU, McDonough SP, Divers TJ et al (2006) Immunoprotection of recombinant leptospiral immunoglobulin-like protein A against Leptospira interrogans serovar Pomona infection. Infect Immun 74:1745–1750

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Palaniappan RU, Chang YF, Jusuf SS et al (2002) Cloning and molecular characterization of an immunogenic LigA protein of Leptospira interrogans. Infect Immun 70:5924–5930

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Raemaekers RJ, de Muro L, Gatehouse JA, Fordham-Skelton AP (1999) Functional phytohemagglutinin (PHA) and Galanthus nivalis agglutinin (GNA) expressed in Pichia pastoris correct N-terminal processing and secretion of heterologous proteins expressed using the PHA-E signal peptide. Eur J Biochem 265:394–403

    Article  CAS  PubMed  Google Scholar 

  36. Daly R, Hearn MT (2005) Expression of heterologous proteins in Pichia pastoris: a useful experimental tool in protein engineering and production. J Mol Recognit 18:119–138

    Article  CAS  PubMed  Google Scholar 

  37. Montesino R, Garcia R, Quintero O et al (1998) Variation in N-linked oligosaccharide structures on heterologous proteins secreted by the methylotrophic yeast Pichia pastoris. Protein Expr Purif 14:197–207

    Article  CAS  PubMed  Google Scholar 

  38. Rudd PM, Elliott T, Cresswell P et al (2001) Glycosylation and the immune system. Science 291:2370–2376

    Article  CAS  PubMed  Google Scholar 

  39. Bretthauer RK, Castellino FJ (1999) Glycosylation of Pichia pastoris-derived proteins. Biotechnol Appl Biochem 30(Pt 3):193–200

    CAS  PubMed  Google Scholar 

  40. Trimble RB, Lubowski C, Hauer CR III et al (2004) Characterization of N- and O-linked glycosylation of recombinant human bile salt-stimulated lipase secreted by Pichia pastoris. Glycobiology 14:265–274

    Article  CAS  PubMed  Google Scholar 

  41. Lam JS, Mansour MK, Specht CA et al (2005) A model vaccine exploiting fungal mannosylation to increase antigen immunogenicity. J Immunol 175:7496–7503

    CAS  PubMed  Google Scholar 

  42. Luong M, Lam JS, Chen J et al (2007) Effects of fungal N- and O-linked mannosylation on the immunogenicity of model vaccines. Vaccine 25:4340–4344

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to Michele dos Santos and Kátia R. Pimenta Cardoso for technical assistance.

This work was supported by CNPq (Grant Number 475830/2012-1) and FAPERGS/ARD-no 003/2012. AJAM and OAD were recipients of research scholarships from CNPq.

Conflict of interest

AJAM and OAD are inventors on a patent submission entitled: LigA and LigB proteins (Leptospiral Ig-like (Lig) domains) for vaccination and diagnosis (Patent nos. BRPI0505529 and WO 2007070996). The other authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daiane D. Hartwig.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hartwig, D.D., Bacelo, K.L., de Oliveira, P.D. et al. Mannosylated LigANI Produced in Pichia pastoris Protects Hamsters Against Leptospirosis. Curr Microbiol 68, 524–530 (2014). https://doi.org/10.1007/s00284-013-0505-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-013-0505-4

Keywords

Navigation