Skip to main content
Log in

Screening for MCL-PHA-Producing Fluorescent Pseudomonads and Comparison of MCL-PHA Production Under Iso-osmotic Conditions Induced by PEG and NaCl

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

The medium chain length polyhydroxyalkanoates (MCL-PHA) have attracted much attention from academic and industrial communities for their interesting applications in medical field. The aim of this study was to screen high MCL-PHA-producing fluorescent pseudomonads, and to compare the effect of osmotic stress generated by NaCl (ionic) and polyethylene glycol (PEG, non-ionic inert polymer) on PHA production. A total of 50 fluorescent pseudomonads isolated from rhizospheric soil were screened for PHA production by Sudan Black staining. Out of all the PHA-producing isolates only five were MCL-PHA producers as detected by MCL-PCR. Isolate Bar1 identified as Pseudomonas fluorescens by 16S rRNA gene sequencing was selected for further analysis due to its high MCL-PHA production ability. The iso-osmotic stress generated by NaCl and PEG-6000 showed 5.75- and 3.19-fold enhanced production of PHA at −2 bar osmotic potential, over control (0 bar), respectively. There was 1.8-fold enhanced production of PHA at −2 bar osmotic stress induced by NaCl over PEG. PEG reduces availability of water to microorganisms without reducing exogenously provided nutrients which appear to be responsible for its down performance over NaCl. The FTIR analysis of PHA sample purified from cells showed strong marker bands near 1742, 2870, 1170, 1099, and 2926 cm−1, corresponding to MCL-PHA. The study reported that supplementation of NaCl (electrolyte) in growth media enhances the production of MCL-PHA which can be very useful for its industrial production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Altschul SF, Madden TL, Scaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search program. Nucleic Acids Res 25:3389–3402

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Aneja P, Charles TC (1999) Poly-3-hydroxybutyrate degradation in Rhizobium (Sinorhizobium meliloti): isolation and characterization of a gene encoding 3-hydroxybutyrate dehydrogenase. J Bacteriol 181:849–857

    CAS  PubMed Central  PubMed  Google Scholar 

  3. Arora NK, Singhal V, Maheshwari DK (2006) Salinity induced accumulation of poly-β-hydroxybutyrate in rhizobia indicating its role in cell protection. World J Microbiol Biotechnol 22:603–606

    Article  CAS  Google Scholar 

  4. Bester E, Kroukamp O, Wolfaardt G, Boonzaaier L, Liss S (2010) Metabolic differentiation in biofilms as indicated by carbon dioxide production rates. Appl Environ Microbiol 76:1189–1197

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Chang W, Van De Mortel M, Nielsen L, Nino de Guzman G, Li X, Halverson L (2007) Alginate production by Pseudomonas putida creates a hydrated microenvironment and contributes to biofilm architecture and stress tolerance under water-limiting conditions. J Bacteriol 189:8290–8300

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Chaudhry WN, Jamil N, Ali I, Ayaz MH, Hasnain S (2011) Screening for polyhydroxyalkanoate (PHA)-producing bacterial strains and comparison of PHA production from various inexpensive carbon sources. Ann Microbiol 61:623–629

    Article  CAS  Google Scholar 

  7. Coons MJ, Kuehl RO, Simons NR (1990) Tolerance of ten lettuce cultivars to high temperature combined with NaCl during germination. J Am Soc Hort Sci 115(6):1004–1007

    CAS  Google Scholar 

  8. Dekwer D, Hempel DC (1999) Microaerophilic production of alginate by Azotobacter vinelandii In: Sabra W (ed), Von der Gemeinsamen Naturwissenscha ftlichen, Fakultat der Technischen UN. Carolo-Wilhelmina zu Braunschweig, aus Alexandria, Agypten, pp 37–54

  9. Fernández D, Rodríguez E, Bassas M, Viñas M, Solanas AM, Llorens J, Marqués AM, Manresa A (2005) Agro-industrial oily wastes as substrates for PHA production by the new strain Pseudomonas aeruginosa NCIB 40045: effect of culture conditions. Biochem Eng J 26:159–167

    Article  Google Scholar 

  10. Forsyth WGC, Haward AC, Roberts JB (1958) Occurrence of poly-β-hydroxybutyric acid in aerobic gram negative bacteria. Nature 182:800–801

    Article  CAS  PubMed  Google Scholar 

  11. Hazer B, Steinbu¨chel A (2007) Increased diversification of polyhydroxyalkanoates by modification reactions for industrial and medical applications. Appl Microbiol Biotechnol 74:1–12

    Article  CAS  PubMed  Google Scholar 

  12. Hong K, Sun S, Tian W, Chen GQ, Huang W (1999) A rapid method for detecting bacterial polyhydroxyalkanoates in intact cells by Fourier transforms infrared spectroscopy. Appl Microbiol Biotechnol 51:523–526

    Article  CAS  Google Scholar 

  13. Juan ML, Gonzalez LW, Walker GC (1998) A novel screening method for isolating exopolysaccharide deficient mutants. Appl Environ Microbiol 64:4600–4602

    Google Scholar 

  14. King EO, Ward MK, Rany DE (1954) Two simple media for the demonstration of pyocyanin and fluorescein. J Lab Clin Med 44:301–307

    CAS  PubMed  Google Scholar 

  15. Lentzen G, Schwarz T (2006) Extremolytes: natural compounds from extremophiles for versatile application. Appl Microbiol Biotechnol 72:623–634

    Article  CAS  PubMed  Google Scholar 

  16. Maidak BL, Cole JR, Lilburn TG, Parker CT, Saxman PR, Stredwick JM, Garrity GM, Li B, Olsen GL, Pramanik S, Schmidt TM, Tiedje JM (2000) The RDP (Ribosomal Database Project) continues. Nucleic Acids Res 28:173–174

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Maidak BL, Olsen GL, Larsen N, Overbeek R, McCaughey MJ, Woese CR (1997) The ribosomal database project. Nucleic Acids Res 24:82–85

    Article  Google Scholar 

  18. Marova I, Breierova E, Koci R, Friedl Z, Slovak B, Simonova J (2004) Influence of exogenous stress factors on production of carotenoids by some strains of carotenogenics yeast. Ann Microbiol 54:73–85

    CAS  Google Scholar 

  19. Michel BE, Kaufmann MR (1973) The osmotic potential of polyethylene glycol 6000. Plant Physiol 51:914–916

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Miller G, Susuki N, Ciftci-Yilmaz S, Mittler R (2010) Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant, Cell Environ 33:453–467

    Article  CAS  Google Scholar 

  21. Natarajan K, Kishore L, Babu CR (1995) Sodium-chloride stress results in increased poly-beta-hydroxybutyrate production in Rhizobium DDSS-69. Microbios 82:95–107

    CAS  Google Scholar 

  22. Obruca S, Marova I, Stankova M, Mravcova L, Svoboda Z (2010) Effect of ethanol and hydrogen peroxide on poly(3-hydroxybutyrate) biosynthetic pathway in Cupriavidus necator H16. World J Microbiol Biotechnol 26:1261–1267

    Article  CAS  PubMed  Google Scholar 

  23. Ouyang S-P, Luo RC, Chen S–S, Liu Q, Chung A, Wu Q, Chen G-Q (2007) Production of polyhydroxyalkanoates with high 3-hydroxydodecanoate monomer content by fadb and fada knockout mutant of Pseudomonas putida KT2442. Biomacromolecules 8:2504–2511

    Article  CAS  PubMed  Google Scholar 

  24. Porier Y, Nawarath C, Somerville C (1995) Production of polyhydroxyalkanotes, a family of biodegradable plastics and elastomers in bacterial and plant. Biotechnology 13:142–150

    Article  Google Scholar 

  25. Ramalingam S, Vikram M, Vigneshbabu MP, Sivasankari M (2011) Flux balance analysis for maximizing polyhydroxyalkanoate production in Pseudomonas putida. Indian J Biotechnol 10:70–74

    CAS  Google Scholar 

  26. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor, New York, pp 1–3

    Google Scholar 

  27. Sayyed RZ, Gangurde (2010) Poly-β-hydroxybutyrate production by Pseudomonas sp. RZS 1 under aerobic and semi-aerobic condition. Indian J Exp Biol 48:942–947

    CAS  PubMed  Google Scholar 

  28. Schlegel HG, Lafferty R, Krauss I (1970) The isolation of mutants not accumulating poly-beta-hydroxybutyric acid. Arch Microbiol 70:283–294

    Google Scholar 

  29. Shamala TR, Divyashree MS, Davis R, Latha Kumari KS, Vijayendra SVN, Raj B (2009) Production and characterization of bacterial polyhydroxyalkanoate copolymers and evaluation of their blends by Fourier transform infrared spectroscopy and scanning electron microscopy. Indian J Microbiol 49:251–258

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Solaiman DKY (2002) Polymerase-chain-reaction based detection of individual polyhydroxyalkanoate synthase phaC1 and phaC2 genes. Biotechnol Lett 24:245–250

    Article  CAS  Google Scholar 

  31. Solaiman DKY, Ashby RD, Foglia TA (2000) Rapid and specific identification of medium-chain-length polyhydroxyalkanoate synthase gene by polymerase chain reaction. Appl Microbiol Biotechnol 53:690–694

    Article  CAS  PubMed  Google Scholar 

  32. Spiekermann P, Rehm BHA, Kalscheuer R, Baumeister D, Steinbuchel A (1999) A sensitive, viable-colony staining method using Nile red for direct screening of bacteria that accumulate polyhydroxyalkanoic acids and other lipid storage compounds. Arch Microbiol 171:73–80

    Article  CAS  PubMed  Google Scholar 

  33. Steinbuchel A, Lutke-Eversloh T (2003) Metabolic engineering and pathway construction for biotechnological production of relevant polyhydroxyalkanoates in microorganisms. Biochem Eng J 16:81–96

    Article  CAS  Google Scholar 

  34. Tanamool V, Imai T, Danvirutai P, Kaewkannetra P (2011) Biosynthesis of polyhydroxyalkanoate (PHA) by Hydrogenophaga sp. isolated from soil environment during batch fermentation. J Life Sci 5:1003–1012

    CAS  Google Scholar 

  35. Waksman SA, Fred EB (1922) A tentative outline for the plate method for determining the number of microorganisms in the soil. Soil Sci 14:27–28

    Article  CAS  Google Scholar 

  36. Wang L, Armbruster W, Jendrossek D (2007) Production of medium-chain-length hydroxyalkanoic acids from Pseudomonas putida in pH stat. Appl Microbiol Biotechnol 75:1047–1053

    Article  CAS  PubMed  Google Scholar 

  37. Wei Y-H, Chen W-C, Wu H-S, Janarthanan O-M (2011) Biodegradable and biocompatible biomaterial, polyhydroxybutyrate, produced by an indigenous Vibrio sp. BM-1 isolated from marine environment. Mar Drugs. 9(4):615–624

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The authors Khare and Chopra are grateful to Vice Chancellor, Chhatrapati Shahu Ji Maharaj University, Kanpur, India for providing facilities and support while NKA is grateful to VC, BBA University, Lucknow, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ekta Khare.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khare, E., Chopra, J. & Arora, N.K. Screening for MCL-PHA-Producing Fluorescent Pseudomonads and Comparison of MCL-PHA Production Under Iso-osmotic Conditions Induced by PEG and NaCl. Curr Microbiol 68, 457–462 (2014). https://doi.org/10.1007/s00284-013-0497-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-013-0497-0

Keywords

Navigation