Skip to main content

Advertisement

Log in

Molecular Characterization of Oxidative Stress-Inducible LipD of Mycobacterium tuberculosis H37Rv

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

The Mycobacterium tuberculosis has developed intricate strategies to evade the killing of microorganism and support its survival in phagocytes. The genome sequence of bacterium revealed the presence of several genes for lypolytic enzymes. Rv1923 gene, a member of Lip family in M. tuberculosis demonstrated the least sequence similarity with its counterpart in non-pathogenic strain M. smegmatis. The expression of Rv1923 gene (LipD) was not observed in in vitro growing cultures of M. tuberculosis H37Ra while an upregulation of transcription of Rv1923 gene was noticed in oxidative conditions. For detailed characterization of LipD enzyme the Rv1923 gene was cloned in pQE30-UA vector and expressed in E. coli M15 cells. LipD was purified from inclusion bodies and refolded with nearly 40 % protein yield. The specific activity of enzyme was calculated to be 16 U/mg with pNP-palmitate as a preferred substrate. Kinetic analysis showed K m 0.645 mM and V max 24.75 U/ml with pNP-palmitate. Ser-102, Asp-342, and His-369, predicted as the members of the catalytic triad, were confirmed by mutagenesis. Mutagenesis studies revealed that catalytic serine residues located in β-lactamase motifs (S-X-X-K) were responsible for lipolytic activity. Secondary structure analysis by CD spectroscopy demonstrated the presence of α helices and β sheets in the canonical structure of LipD. The enzyme was stable up to 50 °C and was active even at pH 6.0. The expression of enzyme under stress conditions and its activity and stability at high temperature and low pH suggested the possible role of LipD in the survival of mycobacterium in macrophage compartment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Arpigny JL, Jaeger KE (1999) Bacterial lipolytic enzymes: classification and properties. Biochem J 343(Pt 1):177–183

    Article  CAS  PubMed  Google Scholar 

  2. Berto P, Commenil P, Belingheri L, Dehorter B (1999) Occurrence of a lipase in spores of Alternaria brassicicola with a crucial role in the infection of cauliflower leaves. FEMS Microbiol Lett 180:183–189

    Article  CAS  PubMed  Google Scholar 

  3. Camacho R, Ensergueix D, Perez E, Gicquel B, Guilhot C (1999) Identification of a virulence gene cluster of Mycobacterium tuberculosis by signature-tagged transposon mutagenesis. Mol Microbiol 34:257–267

    Article  CAS  PubMed  Google Scholar 

  4. Canaan S, Maurin D, Chahinian H, Pouilly B, Durousseau C, Frassinetti F, Scappuccini-Calvo L, Cambillau C, Bourne Y (2004) Expression and characterization of the protein Rv1399c from Mycobacterium tuberculosis. A novel carboxyl esterase structurally related to the HSL family. Eur J Biochem 271:3953–3961

    Article  CAS  PubMed  Google Scholar 

  5. Cha SS, An YJ, Jeong CS, Kim MK, Jeon JH, Lee CM, Lee HS, Kang SG, Lee JH (2013) Structural basis for the β-lactamase activity of EstU1, a family VIII carboxylesterase. Proteins. doi:10.1002/prot.24334

    PubMed  Google Scholar 

  6. Cole ST, Brosch R, Parkhill J, Garnier T, Churcher C, Harris D, Gordon SV, Eiglmeier K, Gas S, Barry CE 3rd, Tekaia F, Badcock K, Basham D, Brown D, Chillingworth T, Connor R, Davies R, Devlin K, Feltwell T, Gentles S, Hamlin N, Holroyd S, Hornsby T, Jagels K, Krogh A, McLean J, Moule S, Murphy L, Oliver K, Osborne J, Quail MA, Rajandream MA, Rogers J, Rutter S, Seeger K, Skelton J, Squares R, Squares S, Sulston JE, Taylor K, Whitehead S, Barrell BG (1998) Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393:537–544

    Article  CAS  PubMed  Google Scholar 

  7. Cotes K, Dhouib R, Douchet I, Chahinian H, de Caro A, Carrière F, Canaan S (2007) Characterization of an exported monoglyceride lipase from Mycobacterium tuberculosis possibly involved in the metabolism of host cell membrane lipids. Biochem J 408:417–427

    Article  CAS  PubMed  Google Scholar 

  8. Daniel J, Maamar H, Deb C, Sirakova TD, Kolattukudy PE (2011) Mycobacterium tuberculosis uses host triacylglycerol to accumulate lipid droplets and acquires a dormancy-like phenotype in lipid-loaded macrophages. PLoS Pathog 7(6):e1002093. doi:10.1371/journal.ppat.1002093

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. de Souza GA, Leversen NA, Målen H, Wiker HG (2011) Bacterial proteins with cleaved or uncleaved signal peptides of the general secretory pathway. J Proteomics 21(75):502–510

    Article  Google Scholar 

  10. Deb C, Daniel J, Sirakova TD, Abomoelak B, Dubey VS, Kolattukudy PE (2006) A novel lipase belonging to the hormone-sensitive lipase family induced under starvation to utilize stored triacylglycerol in Mycobacterium tuberculosis. J Biol Chem 281:3866–3875

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Fontán P, Aris V, Ghanny S, Soteropoulos P, Smith I (2008) Global transcriptional profile of Mycobacterium tuberculosis during THP human macrophage infection. Infect Immun 76(2):717–725

    Article  PubMed Central  PubMed  Google Scholar 

  12. Ganaie AA, Lella RK, Solanki R, Sharma C (2011) Thermostable hexameric form of eis (Rv2416c) protein of M. tuberculosis plays an important role for enhanced intracellular survival within macrophages. PLoS One 6(11):e27590

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Gouet P, Courcelle E, Stuart DI, Metoz F (1999) ESPript: multiple sequence alignments in PostScript. Bioinformatics 15:305–308

    Article  CAS  PubMed  Google Scholar 

  14. Jaeger KE, Ransac S, Dijkstra BW, Colson C, van Heuvel M, Misset O (1994) Bacterial lipases. FEMS Microbiol Rev 15:29–63

    Article  CAS  PubMed  Google Scholar 

  15. Livak KJ, Schmittgen TD (2005) Analysis of relative gene expression data using realtime quantitative PCR and the 2∆∆C (T) method. Methods 25:402–408

    Article  Google Scholar 

  16. Lonon MK, Woods DE, Straus DC (1998) Production of lipase by clinical isolates of Pseudomonas cepacia. J Clin Microbiol 26:979–984

    Google Scholar 

  17. Low KL, Rao PS, Shui G, Bendt AK, Pethe K, Thomas D, Wenk MR (2009) Triacylglycerolutilization is required for regrowth of in vitro hypoxic nonreplicating Mycobacterium bovis bacillus Calmette-Guerin. J Bacteriol 191:5037–5043

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. MacMicking JD, Taylor GA, McKinney JD (2003) Immune control of tuberculosis by IFN-gamma-inducible LRG-47. Science 302:654–659

    Article  CAS  PubMed  Google Scholar 

  19. Manganelli R, Proveddi R, Rodrigue S, Beaucher J, Gaudreau L, Smith I (2004) Sigma factors and global gene regulation in Mycobacterium tuberculosis. J Bacteriol 186:895–902

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Narayana Y, Joshi B, Katoch VM, Mishra KC, Balaji KN (2007) Differential B-cell responses are induced by Mycobacterium tuberculosis PE antigens Rv1169c, Rv0978c, and Rv1818c. Clin Vaccine Immunol 14(10):1334–1341

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Nardini M, Dijkstra BW (1999) Alpha/beta hydrolase fold enzymes: the family keeps growing. Curr Opin Struct Biol 9(6):732–737

    Article  CAS  PubMed  Google Scholar 

  22. Perez-Llarena F, Martín JF, Galleni M, Coque JJ, Fuente JL, Frère JM, Liras P (1997) The bla gene of the cephamycin cluster of Streptomyces clavuligerus encodes a class A beta-lactamase of low enzymatic activity. J Bacteriol 179(19):6035–6040

    CAS  PubMed Central  PubMed  Google Scholar 

  23. Petersen EI, Valinger G, Solkner B, Stubenrauch G, Schwab H (2001) A novel esterase from Burkholderia gladioli which shows high deacetylation activity on cephalosporins is related to beta-lactamases and DD-peptidases. J Biotechnol 89(1):11–25

    Article  CAS  PubMed  Google Scholar 

  24. Richter L, Saviola B (2009) The lipF promoter of Mycobacterium tuberculosis is upregulated specifically by acidic pH but not by other stress conditions. Microbiol Res 164:228–232

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Rollof J, Braconier JH, Soderstrom C, Ehle PN (1988) Interference of Staphylococcus aureus lipase with human granulocyte function. Euro J Clin Microbiol Infect Dis 7:505–510

    Article  CAS  Google Scholar 

  26. Ruiz C, Falcocchio S, Pastor FI, Saso L, Diaz P (2007) Helicobacter pylori EstV: identification, cloning, and characterization of the first lipase isolated from an Epsilon-proteobacterium down-pointing small open triangle. Appl Environ Microbiol 73(8):2423–2431

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Schaible UE, Sturgill-Koszycki S, Schlesinger PH, Russell DG (1998) Cytokine activation leads to acidification and increases maturation of Mycobacterium avium containing phagosomes in murine macrophages. J Immunol 160:1290–1296

    CAS  PubMed  Google Scholar 

  28. Segal W, Bloch H (1956) Biochemical differentiation of Mycobacterium tuberculosis grown in vivo and in vitro. J Bacteriol 72:132–141

    CAS  PubMed Central  PubMed  Google Scholar 

  29. Segal W, Bloch H (1957) Pathogenic and immunogenic differentiation of Mycobacterium tuberculosis grown in vivo and in vitro. Am Rev Tuberc Pulm Dis 75:495–500

    CAS  Google Scholar 

  30. Shen G, Singh K, Chandra D, Serveau-Avesque C, Maurin D, Canaan S, Singla R, Behera D, Laala S (2011) LipC (Rv0220) is an immunogenic cell surface esterase of Mycobacterium tuberculosis. Infect Immun 80:243–253

    Article  PubMed  Google Scholar 

  31. Sigurgisladottirr S, Konraosdottir M, Jonson A (1993) Lipase activity of thermophilic bacteria from Icelandic hot spring. Biotechnol Lett 15:361–366

    Article  Google Scholar 

  32. Singh G, Singh G, Jadeja D, Kaur J (2010) Lipid hydrolizing enzymes in virulence: Mycobacterium tuberculosis as a model system. Crit Rev Microbiol 36:259–269

    Article  CAS  PubMed  Google Scholar 

  33. Ting LM, Kim AC, Cattamanchi A, Ernst JD (1999) Mycobacterium tuberculosis inhibits IFN-gamma transcriptional responses without inhibiting activation of STAT1. J Immunol 163:3898–3906

    CAS  PubMed  Google Scholar 

  34. Tsuboi R, Komatsuzaki H, Ogawa H (1996) Induction of an extracellular esterase from Candida albicans and some of its properties. Infect Immun 64:2936–2940

    CAS  PubMed Central  PubMed  Google Scholar 

  35. Via LE, Fratti RA, McFalone M, Pagan-Ramos E, Deretic D, Deretic V (1998) Effects of cytokines on mycobacterial phagosome maturation. J Cell Sci 111:897–905

    CAS  PubMed  Google Scholar 

  36. Voigt CA, Schäfer W, Salomon S (2005) A secreted lipase of Fusarium graminearum is a virulence factor required for infection of cereals. Plant J 42:364–375

    Article  CAS  PubMed  Google Scholar 

  37. Wilson JW, Schurr MJ, LeBlanc CL, Ramamurthy R, Buchanan KL, Nickerson CA (2002) Mechanisms of bacterial pathogenicity. Postgrad Med J 78:216–224

    Article  CAS  PubMed  Google Scholar 

  38. Zhang M, Wang JD, Li ZF, Xie J, Yang YP, Zhong Y, Wang HH (2005) Expression and characterization of the carboxyl esterase Rv3487c from Mycobacterium tuberculosis. Protein Expr Purif 42:59–66

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Financial support from Department of Biotechnology, New Delhi and Council of Scientific and Industrial Research, New Delhi, India to JK and SRF to GS is acknowledged. We thank Dr. S. Mukhopadhyay from IISER, SAS Nagar, Mohali for providing the facility for spectroscopic analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jagdeep Kaur.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 12 kb)

Supplementary material 2 (DOCX 718 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, G., Arya, S., Kumar, A. et al. Molecular Characterization of Oxidative Stress-Inducible LipD of Mycobacterium tuberculosis H37Rv. Curr Microbiol 68, 387–396 (2014). https://doi.org/10.1007/s00284-013-0486-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-013-0486-3

Keywords

Navigation