Skip to main content
Log in

Use of the IRAP Marker to Study Genetic Variability in Pseudocercospora fijiensis Populations

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Pseudocercospora fijiensis is the etiological agent of black Sigatoka, which is currently considered as one of the most destructive banana diseases in all locations where it occurs. It is estimated that a large portion of the P. fijiensis genome consists of transposable elements, which allows researchers to use transposon-based molecular markers in the analysis of genetic variability in populations of this pathogen. In this context, the inter-retrotransposon-amplified polymorphism (IRAP) was used to study the genetic variability in P. fijiensis populations from different hosts and different geographical origins in Brazil. A total of 22 loci were amplified and 77.3 % showed a polymorphism. Cluster analysis revealed two major groups in Brazil. The observed genetic diversity (H E) was 0.22, and through molecular analysis of variance, it was determined that the greatest genetic variability occurs within populations. The discriminant analysis of principal components revealed no structuring related to the geographical origin of culture of the host. The IRAP-based marker system is a suitable tool for the study of genetic variability in P. fijiensis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Carlier J, Lebrun MH, Zapater MF, Dubois C, Mourichon X (1996) Genetic structure of the global population of banana black leaf streak fungus, Mycosphaerella fijiensis. Mol Ecol 5:499–510

    Article  Google Scholar 

  2. Chadha S, Gopalakrishna T (2005) Retrotransposon-microsatellite amplified polymorphism (REMAP) markers for genetic diversity assessment of the rice blast pathogen (Magnaporthe grisea). Genome 48:943–945

    Article  CAS  PubMed  Google Scholar 

  3. Churchill ACL (2011) Mycosphaerella fijiensis, the black leaf streak pathogen of banana: progress towards understanding pathogen biology and detection, disease development, and the challenges of control. Mol Plant Pathol 12:307–328

    Article  CAS  PubMed  Google Scholar 

  4. Clutterbuck AJ (2011) Genomic evidence of repeat-induced point mutation (RIP) in filamentous ascomycetes. Fungal Genet Biol 48:306–326

    Article  PubMed  Google Scholar 

  5. Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15

    Google Scholar 

  6. Excoffier L, Laval G, Schneider S (2005) ARLEQUIN ver. 3.1: an integrated software package for population genetics data analysis. Evol Bioinform Online 1:47–50

    CAS  PubMed Central  Google Scholar 

  7. Grzebelus D (2006) Transposon insertion polymorphism as a new source of molecular markers. J Fruit and Ornam Plant Res 14:21–29

    CAS  Google Scholar 

  8. Hayden HL, Carlier J, Aitken EAB (2003) Genetic structure of Mycosphaerella fijiensis populations from Australia, Papua New Guinea and the Pacific Islands. Plant Pathol 52:703–712

    Article  CAS  Google Scholar 

  9. Johanson A, Crowhurst RN, Rikkerink EHA, Fullerton RA, Templeton MD (1994) The use of species-specific DNA probes for the identification of Mycosphaerella fijiensis and M. musicola, the causal agents of Sigatoka disease of banana. Plant Pathol 43:701–707

    Article  Google Scholar 

  10. Jombart T (2008) Adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics 24:1403–1405

    Article  CAS  PubMed  Google Scholar 

  11. Jombart T, Devillard S, Balloux F (2010) Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genet. doi:10.1186/1471-2156-11-94

    PubMed Central  PubMed  Google Scholar 

  12. Jones DR (2000) Introduction to banana, abacá and enset. In: Jones DR (ed) Diseases of Banana. CABI Publishing, Abacá and Enset, Wallingford, pp 37–79

    Google Scholar 

  13. Kalendar R, Grob T, Regina M, Suoniemi A, Schulman A (1999) IRAP and REMAP: two new retrotransposon-based DNA fingerprinting techniques. Thor Appl Genet 98:704–711

    Article  CAS  Google Scholar 

  14. Kalendar R, Schulman AH (2006) IRAP and REMAP for retrotransposon-based genotyping and fingerprinting. Nat Protoc 1:2478–2484

    Article  CAS  PubMed  Google Scholar 

  15. Mcdonald BA, Linde C (2002) Pathogen population genetics, evolutionary potential, and durable resistance. Annu Rev Phytopathol 40:349–379

    Article  CAS  PubMed  Google Scholar 

  16. Nei M (1973) Analysis of gene diversity in subdivided populations. Proc Natl Acad Sci USA 70:3321–3323

    Article  CAS  PubMed  Google Scholar 

  17. Pasquali M, Saravanakumar D, Gullino ML, Garibaldi A (2008) Sequence-specific amplified polymorphism (SSAP) technique to analyse Fusarium oxysporum f. sp. lactucae VCG 0300 isolate from lettuce. J Plant Pathol 90:527–535

    CAS  Google Scholar 

  18. Pereira JCR, Gasparotto L, Coelho AFS, Urben AB (1998) Ocorrência da Sigatoka negra no Brasil. Fitopatol Bras 23:295

    Google Scholar 

  19. R development Core Team (2007) R: a language and environment for statiscal compunting. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  20. Rieux A, De Lapeyre De Bellaire L, Zapater MF, Ravigne V, Carlier J (2012) Recent range expansion and agricultural landscape heterogeneity have only minimal effect on the spatial genetic structure of the plant pathogenic fungus Mycosphaerella fijiensis. Heredity. doi:10.1038/hdy.2012.55

    PubMed  Google Scholar 

  21. Robert S, Ravigne V, Zapater MF, Abadie C, Carlier J (2012) Contrasting introduction scenarios among continents in the worldwide invasion of the banana fungal pathogen Mycosphaerella fijiensis. Mol Ecol 21:1098–1114

    Article  CAS  PubMed  Google Scholar 

  22. Rouzic AL, Boutin TS, Capy P (2007) Long-term evolution of transposable elements. Evolution 104:9375–19380

    Google Scholar 

  23. Santana MF, Araújo EF, Souza JT, Mizubuti ESG, Queiroz MV (2012) Development of molecular markers based on retrotransposons for the analysis of genetic variability in Moniliophthora perniciosa. Eur J Plant Pathol. doi:10.1007/s10658-012-0031-4

    Google Scholar 

  24. Schulman AH, Flavell AJ, Ellis TH (2004) The application of LTR retrotransposons as molecular markers in plants. Methods Mol Biol 260:145–173

    CAS  PubMed  Google Scholar 

  25. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  CAS  PubMed  Google Scholar 

  26. Thompson JD, Higgins DG, Gibson TJ (1994) Clustal W: improving the sensibility of progressive multiple sequence alignment through sequence weighting, position specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Vitte C, Ishii T, Lamy F, Brar D, Panaud O (2004) Genomic paleontology provides evidence for two distinct origins of Asian rice (Oryza sativa L). Mol Genet Genomics 272:504–511

    Article  CAS  PubMed  Google Scholar 

  28. Xu Z, Wang H (2007) LTR_FINDER: an efficient tool for the prediction of full-length LTR retrotransposons. Nucleic Acids Res 35:265–268

    Article  Google Scholar 

  29. Yeh FC, Yang R, Boyle TJ et al (1999) PopGene32, Microsoft Windows-based freeware for population genetic analysis, Version 1.32. Molecular Biology and Biotechnology Centre, University of Alberta, Edmonton

  30. Zandjanakou-Tachin M, Vroh-Bi I, Ojiambo PS, Tenkouano A, Gumedzoe YM, Bandyopadhyay R (2009) Identification and genetic diversity of Mycosphaerella species on banana and plantain in Nigeria. Plant Pathol 58:536–546

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Brazilian Agency CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico), CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior), and FAPEMIG (Fundação de Amparo à Pesquisa do estado de Minas Gerais).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marisa Vieira de Queiroz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Queiroz, C.B., Santana, M.F., da Silva, G.F. et al. Use of the IRAP Marker to Study Genetic Variability in Pseudocercospora fijiensis Populations. Curr Microbiol 68, 358–364 (2014). https://doi.org/10.1007/s00284-013-0454-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-013-0454-y

Keywords

Navigation