Skip to main content
Log in

3-Hydroxypropionic Acid as an Antibacterial Agent from Endophytic Fungi Diaporthe phaseolorum

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Endophytic fungi are considered a rich source of active compounds resulting from their secondary metabolism. Fungi from marine environment grow in a habitat with unique conditions that can contribute to the activation of metabolic pathways of synthesis of different unknown molecules. The production of these compounds may support the adaptation and survival of the fungi in the marine ecosystem. Mangroves are ecosystems situated between land and sea. They are frequently found in tropical and subtropical areas and enclose approximately 18.1 million hectares of the planet. The great biodiversity found in these ecosystems shows the importance of researching them, including studies regarding new compounds derived from the endophytic fungi that inhabit these ecosystems. 3-hydroxypropionic acid (3-HPA) has been isolated from the mangrove endophytic fungus Diaporthe phaseolorum, which was obtained from branches of Laguncularia racemosa. The structure of this compound was elucidated by spectroscopic methods, mainly 1D and 2D NMR. In bioassays, 3-HPA showed antimicrobial activities against both Staphylococcus aureus and Salmonella typhi. The structure of this antibiotic was modified by the chemical reaction of Fischer-Speier esterification to evaluate the biologic activity of its chemical analog. The esterified product, 3-hydroxypropanoic ethyl ester, did not exhibit antibiotic activity, suggesting that the free carboxylic acid group is important to the pharmacological activity. The antibiotic-producing strain was identified with internal transcribed spacer sequence data. To the best of our knowledge, this is the first report of antibacterial activity by 3-HPA against the growth of medically important pathogens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Agusta A, Ohashi K, Shibuya H (2006) Bisanthraquinone metabolites produced by the endophytic fungus Diaporthe sp. Chem Pharm Bull 54:579–582

    Article  PubMed  CAS  Google Scholar 

  2. Araújo WL, Lima AOS, Azevedo JL, Marcon J, Sobral JK, Lacava PT (2002) Manual: isolamento de microrganismos endofíticos, 1st edn. CALQ, Piracicaba

    Google Scholar 

  3. Arnold AE (2007) Understanding the diversity of foliar endophytic fungi: progress, challenges, and frontiers. Fungal Biol Rev 21:51–66

    Article  Google Scholar 

  4. Ash GJ, Stodart B, Sakuanrungsirikul S, Anschaw E, Crump N, Hailstones D, Harper JD (2010) Genetic characterization of a novel Phomopsis sp., a putative biocontrol agent for Carthamus lanatus. Mycologia 102:54–61

    Article  PubMed  CAS  Google Scholar 

  5. Astchul SF, Gish W, Miller W, Myers EV, Lipman D (1990) Basic local alignment tool. J Mol Biol 215:403–410

    Google Scholar 

  6. Badola R, Primavera JH, Barbier E, Dahdouh-Guebas F (2008) Ethnobiology, socio-economics and management of mangrove forests: a review. Aquat Bot 89:220–236

    Article  Google Scholar 

  7. Biek D, Critchley IA, Riccobene TA, Thye DA (2010) Ceftaroline fosamil: a novel broad-spectrum cephalosporin with expanded anti-Gram-positive activity. J Antimicrob Chemother 65:9–16

    Article  Google Scholar 

  8. Bills GF, Platas G, Fillola A, Jiménez MRJ (2008) Enhancement of antibiotic and secondary metabolite detection from filamentous fungi by growth on nutritional arrays. J Appl Microbiol 104:1644–1658

    Article  PubMed  CAS  Google Scholar 

  9. Bills GF, Giacobbe RA, Lee SH, Pelaez F, Tkacz JS (1992) Tremorgenic mycotoxinas, paspalitrem A and C, from a tropical Phomopsis. Fungal Biol 96:977–983

    CAS  Google Scholar 

  10. Brady SF, Wagenaar MM, Singh MP, Janso JE, Clardy J (2000) The cytosporones, new osctacetide antibiotics isolated from an endophytic fungus. Org Lett 2:4043–4046

    Article  PubMed  CAS  Google Scholar 

  11. Buatong J, Phongpaichit S, Rukachaisirikul V, Sakayaroj J (2011) Antimicrobial activity of crude extracts from mangrove fungal endophytes. World J Microbiol Biotechnol 27:3005–3008

    Article  CAS  Google Scholar 

  12. Bungihan ME, Tan MA, Kitajima M, Kogure N, Franzblau SG, Dela Cruz TE, Takayama H, Nonato MG (2011) Bioactive metabolites of Diaporthe sp. P133, an endophytic fungus isolated from Pandanus amaryllifolius. J Nat Med 65:606–609

    Article  PubMed  CAS  Google Scholar 

  13. Cabedo N, El Aouad N, Berenguer I, Zamora M, Arellano MCR, Suvire F, Bermejo A, Enriz D, Cortes D (2006) Efficient synthesis and structural analysis of new dioxopiperazine isoquinolines. Tetrahedron 62:4408–4418

    Article  CAS  Google Scholar 

  14. Chen G, Lin Y, Wen L, Vrijmoed LLP, Jones EBG (2003) Two new metabolites of a marine endophytic fungus from an estuarine mangrove on the South China Sea coast. Tetrahedron 59:4907–4909

    Article  CAS  Google Scholar 

  15. Dai J, Krohn K, Floerke U, Gehle D, Aust HJ, Draeger S, Schulz B, Rheinheimer J (2005) Novel highly substituted biraryl ethers, phomopsines D-G, isolated from endophytic fungus Phomopsis sp. from Adenocarpus foliolosus. Eur J Org Chem 23:5100–5105

    Article  Google Scholar 

  16. Das S, Lyla PS, Khan A (2006) Marine microbial diversity and ecology: importance and future perspectives. Curr Sci 90:1325–1334

    CAS  Google Scholar 

  17. Debbab A, Aly AH, Proksch P (2011) Bioactive secondary metabolites from endophytes and associated marine derived fungi. Fungal Divers 49:1–12

    Article  Google Scholar 

  18. Dettrakul S, Kittakoop P, Isaka M, Nopichai S, Suyarnsestakorn C, Tanticharoen M, Thebtaranonth Y (2003) Antimycobacterial Pimarane Diterpenes from the fungus Diaporthe sp. Bioorg Med Chem Lett 13:1253–1255

    Article  PubMed  CAS  Google Scholar 

  19. El Aouad N, Berenguer I, Romero V, Marín P, Serrano A, Andujar S, Suvire F, Bermejo A, Ivorra MD, Enriz RD, Cabedo N, Cortes D (2009) Structure–activity relationship of dopaminergic halogenated 1-benzyl-tetrahydroisoquinoline derivatives. Eur J Med Chem 44:4616–4621

    Article  PubMed  Google Scholar 

  20. Elsaesser B, Krohn K, Floerke U, Root N, Aust HJ, Draeger S, Schulz B, Antus S, Kurtan T (2005) X ray structure determination absolute configuration and biological activity of phomoxanthone A. Eur J Org Chem 21:4563–4570

    Article  Google Scholar 

  21. Fischer E, Speier A (1895) Darstellung der Ester. Ber Dtsch Chem Ges 28:3252–3258

    Article  CAS  Google Scholar 

  22. Fravel D, Olivain C, Alabouvette C (2003) Fusarium oxysporum and its biocontrol. New Phytol 157:493–502

    Article  Google Scholar 

  23. Freire CO, Bezerra JL (2001) Foliar endophytic fungi of Ceara State (Brazil): a preliminary study. Summa Phytopathol 27:304–308

    Google Scholar 

  24. Foster T (1996) Medical microbiology. University of Texas Medical Branch at Galveston, Galveston

    Google Scholar 

  25. Fox EM, Howlett BJ (2008) Secondary metabolism: regulation and role in fungal biology. Curr Opin Microbiol 11:481–487

    Article  PubMed  CAS  Google Scholar 

  26. Gallo MBC, Guimarães DO, Momesso LS, Pupo MT (2008) Natural Products from endophytic fungi. In: Saikai R, Bezbaruah RL, Bora TC (eds) Microbial biotechnology. New India Publishing Agency, New Delhi, pp 139–168

    Google Scholar 

  27. González MC, Sentandreu MAK, Rao S, Zafra-Polo MC, Cortes D (1996) Prenylated benzopyran derivatives from two Polyalthia species. Phytochemistry 43:1361–1364

    Article  Google Scholar 

  28. González V, Tello ML (2011) The endophytic mycota associated with Vitis vinifera in central Spain. Fungal Divers 47:29–42

    Article  Google Scholar 

  29. Gonzalez-Ruiz A, Beiras-Fernandez A, Lehmkuhl H, Andrew Seaton R, Loeffler J, Chave R (2011) Clinical experience with daptomycin in Europe: the first 2.5 years. J Antimicrob Chemother 66:912–919

    Article  PubMed  CAS  Google Scholar 

  30. Gopal B, Chauhan M (2006) Biodiversity and its conservation in the Sundarban Mangrove Ecosystem. Aqua Sci 68:338–354

    Article  Google Scholar 

  31. Gunatilaka AAL (2006) Natural products from plant-associated microorganisms: distribution, structural diversity, bioactivity and implications of their occurrence. J Nat Prod 69:509–526

    Article  PubMed  CAS  Google Scholar 

  32. Hawksworth DL (2004) Fungal diversity and its implications for genetic resource collections. Stud Mycol 50:9–18

    Google Scholar 

  33. Holt KE, Parkhill J, Mazzoni CJ, Roumagnac P, Weill FX, Goodhead I, Rance R, Baker S, Maskell DJ, Wain J, Dolecek C, Achtman M, Dougan G (2008) High-throughput sequencing provides insights into genome variation and evolution in Salmonella typhi. Nat Genet 40:987–993

    Article  PubMed  CAS  Google Scholar 

  34. Horn WS, Schwartz RE, Simmonds MSJ, Blaney WM (1994) Isolation and characterization of phomodiol, new antifungal from Phomopsis. Tetrahedron 35:6037–6040

    Article  CAS  Google Scholar 

  35. Huang Z, Cai X, Shao C, She Z, Xia X, Chen Y, Yang J, Zhou S, Lin Y (2008) Chemistry and weak antimicrobial activities of phomopsins produced by mangrove endophytic fungus Phomopsis sp. ZSU-H76. Phytochemistry 69:1604–1608

    Article  PubMed  CAS  Google Scholar 

  36. Ichikawa T, Date M, Ishikura T, Ozaki A (1971) Improvement of kasugamycin-producing strain by the agar piece method and protroph method. Folia Microbiol 16:218–224

    Article  CAS  Google Scholar 

  37. Isaka M, Jaturapat A, Rukseree K, Danwisethanjana K, Tanticharoen M, Thebtaranonth Y (2001) Phomoxanthones A and B, novel xanthone dimmers from the endophytic fungus Phomopsis species. J Nat Prod 64:1015–1018

    Article  PubMed  CAS  Google Scholar 

  38. Jiang X, Meng X, Xian M (2009) Biosynthetic pathways for 3-hydroxypropionic acid production. Appl Microbiol Biotechnol 82:995–1003

    Article  PubMed  CAS  Google Scholar 

  39. Jonkers W, Rodriguez Estrada AE, Lee K, Breakspear A, May G, Kistler HC (2012) Metabolome and transcriptome of the interaction between Ustilago maydis and Fusarium verticillioides in vitro. Appl Environ Microbiol 78:3656–3667

    Article  PubMed  CAS  Google Scholar 

  40. Kobayashi H, Meguro S, Yoshimoto T, Namikoshi M (2003) Absolute structure, biosynthesis, and anti-microtubule activity of phomopsidin, isolated from a marine derived fungus Phomopsis sp. Tetrahedron 59:455–459

    Article  CAS  Google Scholar 

  41. Kulik MM (1984) Symptomless infection, persistence, and production of pycnidia in host and non-host plants by Phomopsis batatae, Phomopsis phaseoli and Phomopsis sojae, and the taxonomic implications. Mycologia 76:274–291

    Article  Google Scholar 

  42. Li MY, Xiao Q, Pan JY, Wu J (2009) Natural products from semi-mangrove flora: source, chemistry and bioactivities. Nat Prod Rep 26:281–298

    Article  PubMed  Google Scholar 

  43. Lin X, Huang Y, Fang M, Wang J, Zheng Z, Su W (2005) Cytotoxic and antimicrobial metabolites from marine lignicolous fungi, Diaporthe sp. FEMS Microbiol Lett 251:53–58

    Article  PubMed  CAS  Google Scholar 

  44. Mcmurry J (1997) Química Orgânica, 2nd edn. Técnicos e Científicos, Rio de Janeiro

    Google Scholar 

  45. Mattheus W, Gao L, Herdewijn P, Landuyt B, Verhaegen J, Masschelein JG, Lavigne R (2010) Isolation and purification of a new Kalimantacin/Batumin-related polyketide antibiotic and elucidation of its biosynthesis gene cluster. Chem Biol 17:149–159

    Article  PubMed  CAS  Google Scholar 

  46. Nagelkerken I, Blaber SJM, Bouillon S, Green P, Haywood M, Kirton LG, Meynecke JO, Pawlik J, Penrose HM, Sasekumar APJ (2008) The habitat function of mangroves for terrestrial and marine fauna: a review. Aquat Bot 89:155–185

    Article  Google Scholar 

  47. Owen NL, Hundley N (2004) Endophytes—the chemical synthesizer inside plants. Sci Prog 87:79–99

    Article  PubMed  CAS  Google Scholar 

  48. Parkhill J, Dougan G, James KD, Thomson NR, Pickard D, Wain J, Churcher C, Mungall KL, Bentley SD, Holden MTG, Sebaihia M, Baker S, Basham D, Brooks K, Chillingworth T, Connerton P, Cronin A, Davis P, Davies RM, Dowd L, White N, Farrar J, Feltwell T, Hamlin N, Haque A, Hien TT, Holroyd S, Jagels K, Kroghk A, Larsenk TS, Leather S, Moule S, Gaora POÂ, Parry C, Quail M, Rutherford K, Simmonds M, Skelton J, Stevens K, Whitehead S, Barrell BG (2001) Complete genome sequence of a multiple drug resistant Salmonella enteric serovar typhi CT18. Nature 413:848–852

    Article  PubMed  CAS  Google Scholar 

  49. Pittayakhajonwut P, Dramae A, Madla S, Lartpornmatulee N, Boonyuen N, Tanticharoen M (2006) Depsidones from the endophytic fungus BCC 8616. J Nat Prod 69:1361–1363

    Article  PubMed  CAS  Google Scholar 

  50. Raeder U, Broda P (1985) Rapid preparation of DNA from filamentous fungi. Lett Appl Microbiol 1:17–20

    Article  CAS  Google Scholar 

  51. Rivera-Orduña FN, Suarez-Sanchez RA, Flores-Bustamante ZR, Gracida-Rodriguez JN, Flores-Cotera LB (2011) Diversity of endophytic fungi of Taxus globosa (Mexican yew). Fungal Divers 47:65–74

    Article  Google Scholar 

  52. Rodriguez Estrada AE, Hegeman A, Kistler HC, May G (2011) In vitro interactions between Fusarium verticillioides and Ustilago maydis through real-time PCR and metabolic profiling. Fungal Genet Biol 48:874–885

    Article  PubMed  CAS  Google Scholar 

  53. Rodriguez Estrada AE, Jonkers W, Corby Kistler H, May G (2012) Interactions between Fusarium verticillioides, Ustilago maydis, and Zea mays: an endophyte, a pathogen, and their shared plant host. Fungal Genet Biol 49:578–587

  54. Saikkonen K, Faeth SH, Helander M, Sullivan TJ (1998) Fungal endophytes: a continuum of interactions with host plants. Annu Rev Ecol Syst 29:319–343

    Article  Google Scholar 

  55. Sauer M, Porro D, Mattanovich D, Branduardi P (2008) Microbial production of organic acids: expanding the markets. Trends Biotechnol 26:100–108

    Article  PubMed  CAS  Google Scholar 

  56. Schmit JP, Müller GM (2007) An estimate of the lower limit of global fungal diversity. Biodivers Conserv 16:99–111

    Article  Google Scholar 

  57. Schulz B, Boyle C, Draeger S, Römmert AK, Krohn K (2002) Endophytic fungi: a source of novel biologically active secondary metabolites. Fungal Biol 106:996–1004

    CAS  Google Scholar 

  58. Schwarz M, Kopcke B, Weber RWS, Sterner O, Anke H (2004) 3-Hydroxypropionic acid as a nematicidal principle in endophytic fungi. Phytochemistry 65:2239–2245

    Article  PubMed  CAS  Google Scholar 

  59. Sebastianes FLS, Lacava PT, Fávaro LCL, Rodrigues MBC, Araújo WL, Azevedo JL, Pizzirani-Kleiner AA (2012) Genetic transformation of Diaporthe phaseolorum, an endophytic fungus found in mangrove forests, mediated by Agrobacterium tumefaciens. Curr Genet 58:21–33

    Article  PubMed  CAS  Google Scholar 

  60. Shanahan PMA, Jesudason MV, Thomson CJ, Amyes SGB (1998) Molecular analysis of and identification of antibiotic resistance genes in clinical isolates of Salmonella typhi from India. J Clin Microbiol 36:1595–1600

    PubMed  CAS  Google Scholar 

  61. Strobel G, Daisy B, Castillo U, Harper J (2004) Natural products from endophitic microorganisms. J Nat Prod 67:257–268

    Article  PubMed  CAS  Google Scholar 

  62. Suryanarayanan TS, Thirunavukkarasu N, Govindarajulu MB, Sasse F, Jansen R, Murali TS (2009) Fungal endophytes and bioprospecting. Fungal Biol Rev 23:9–19

    Article  Google Scholar 

  63. Tamura K, Dudley J, Nei M, Kumar SM (2007) Molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  PubMed  CAS  Google Scholar 

  64. Wain J, Hoa NTT, Chinh NT, Vinh H, Everett M, Diep T, Day NPJ, Solomon T, White NJ, Piddock LJV, Parry CM (1997) Quinolone-resistant Salmonella typhi in Vietnam: molecular basis of resistance and clinical response to treatment. Clin Infect Dis 25:1404–1410

    Article  PubMed  CAS  Google Scholar 

  65. Wells JM, Cutler HG, Cole RJ (1976) Toxicity and plant growth regulator effects of cytochalasin H isolated from Phomopsis sp. Can J Microbiol 22:1137–1143

    Article  PubMed  CAS  Google Scholar 

  66. Whipps JM, Lumsden RD (2001) Commercial use of fungi as plant disease biological control agents: status and prospects. In: Butt T, Jackson C, Magan N (eds) Fungal biocontrol agents: progress, problems and potential. CABI Publishing, Wallingford, pp 9–22

    Chapter  Google Scholar 

  67. Yuan JI, Jian-Nan BI, Bing Y, Xu-Dong Z (2006) Taxol-producing fungi: a new approach to industrial production of taxol. Sheng Wu Gong Cheng Xue Bao 22:1–6

    CAS  Google Scholar 

  68. Zhang HW, Song YC, Tan RX (2006) Biology and chemistry of endophytes. Nat Prod Rep 23:753–771

    Article  PubMed  CAS  Google Scholar 

  69. Zhong-Shan C, Jia-Hui P, Wen-Cheng T, Qi-Jin C, Yong-Cheng L (2009) Biodiversity and biotechnological potential of mangrove associated fungi. J Forest Res 20:63–72

    Article  Google Scholar 

Download references

Acknowledgments

This work was funded by the financial support from the National Council of Technological and Scientific Development (fellowship awarded to F.L.S.S.) and the Fundação de Amparo à Pesquisa do Estado de São Paulo (grant 04/13910-6 and fellowship 06/57060-1 awarded to PTL). We are grateful to Paloma Marín, Laura Moreno and Sonia Lopez.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernanda L. S. Sebastianes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sebastianes, F.L.S., Cabedo, N., Aouad, N.E. et al. 3-Hydroxypropionic Acid as an Antibacterial Agent from Endophytic Fungi Diaporthe phaseolorum . Curr Microbiol 65, 622–632 (2012). https://doi.org/10.1007/s00284-012-0206-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-012-0206-4

Keywords

Navigation