Skip to main content
Log in

Isolation and Characterization of a Novel Bacteriophage φ4D Lytic Against Enterococcus faecalis Strains

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

In recent years, Enterococcus faecalis has emerged as an important opportunistic nosocomial pathogen capable of causing dangerous infections. Therefore, there is an urgent need to develop novel antibacterial agents to control this pathogen. Bacteriophages have very effective bactericidal activity and several advantages over other antimicrobial agents and so far, no serious or irreversible side effects of phage therapy have been described. The objective of this study was to characterize a novel virulent bacteriophage φ4D isolated from sewage. Electron microscopy revealed its resemblance to Myoviridae, with an isometric head (74 ± 4 nm) and a long contractile tail (164 ± 4 nm). The φ4D phage genome was tested using pulsed-field gel electrophoresis and estimated to be 145 ± 2 kb. It exhibited short latent period (25 min) and a relatively small burst size (36 PFU/cell). Tests were conducted on the host range, multiplicities of infection (MOI), thermal stability, digestion of DNA by restriction enzymes, and proteomic analyses of this phage. The isolated phage was capable of infecting a wide spectrum of enterococcal strains. The results of these investigations indicate that φ4D is similar to other Myoviridae bacteriophages (for example φEF24C), which have been successfully used in phagotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ackermann HW (1998) Tailed bacteriophages: the order caudovirales. Adv Virus Res 51:135–201

    Article  PubMed  CAS  Google Scholar 

  2. Araoka H, Kimura M, Yoneyama A (2011) A surveillance of high-level gentamicin-resistant enterococcal bacteremia. J Infect Chemother 17:433–434. doi:10.1007/s10156-010-0175-0

    Article  PubMed  Google Scholar 

  3. Ben Omar N, Castro A, Lucas R et al (2004) Functional and safety aspects of Enterococci isolated from different Spanish foods. Syst Appl Microbiol 27:118–130

    Article  PubMed  CAS  Google Scholar 

  4. Biswas B, Adhya S, Washart P et al (2002) Bacteriophage therapy rescues mice bacteremic from a clinical isolate of vancomycin-resistant Enterococcus faecium. Infect Immun 70:204–210

    Article  PubMed  CAS  Google Scholar 

  5. Bonten MJ, Willems R, Weinstein RA (2001) Vancomycin-resistant enterococci: why are they here, and where do they come from? Lancet Infect Dis 1:314–325

    Article  PubMed  CAS  Google Scholar 

  6. Cetinkaya Y, Falk P, Mayhall CG (2000) Vancomycin-resistant enterococci. Clin Microbiol Rev 13:686–707

    Article  PubMed  CAS  Google Scholar 

  7. Chang HC, Chen CR, Lin JW et al (2005) Isolation and characterization of novel giant Stenotrophomonas maltophilia phage φSMA5. Appl Environ Microbiol 71:1387–1393

    Article  PubMed  CAS  Google Scholar 

  8. Clokie MRJ, Kropinski AM (2009) Bacteriophages: methods and protocols, molecular and applied aspects vol 1 and 2. Humana Press, Totowa, NJ

    Google Scholar 

  9. Duckworth DH, Gulig PA (2002) Bacteriophages: potential treatment for bacterial infections. BioDrugs 16:57–62

    Article  PubMed  CAS  Google Scholar 

  10. Dworniczek E, Kuzko K, Mróz E (2003) Virulence factors and in vitro adherence of Enterococcus strains to urinary catheters. Folia Microbiol 48:671–678

    Article  CAS  Google Scholar 

  11. Dzidic S, Bedekovic V (2003) Horizontal gene transfer-emerging multidrug resistance in hospital bacteria. Acta Pharmacol Sin 24:519–526

    PubMed  CAS  Google Scholar 

  12. Fard RMN, Barton MD, Arthur JL et al (2010) Whole-genome sequencing and gene mapping of a newly isolated lytic enterococcal bacteriophage EFRM31. Arch Virol 155:1887–1891

    Article  PubMed  CAS  Google Scholar 

  13. Fard RMN, Barton MD, Heuzenroeder MW (2010) Novel bacteriophages in Enterococcus spp. Curr Microbiol 60:400–406

    Article  Google Scholar 

  14. Gachechiladze KK, Balardshishvili NS, Adamia RS (1991) Host-controlled modification and restriction as a criterion of evaluating the therapeutical potential of Pseudomonas phage. J Basic Microbiol 31:101–106

    Article  PubMed  CAS  Google Scholar 

  15. Gutiérrez D, Martínez B, Rodríguez A et al (2010) Isolation and characterization of bacteriophages infecting Staphylococcus epidermidis. Curr Microbiol 61:601–608

    Article  PubMed  Google Scholar 

  16. Heintz BH, Halilovic J, Christensen CL (2010) Vancomycin-resistant enterococcal urinary tract infections. Pharmacotherapy 30:1136–1149

    Article  PubMed  CAS  Google Scholar 

  17. Jensen EC, Schrader HS, Rieland B et al (1998) Prevalence of broad-host-range lytic bacteriophages of Sphaerotilus natans, Escherichia coli, and Pseudomonas aeruginosa. Appl Environ Microbiol 64:575–580

    PubMed  CAS  Google Scholar 

  18. Kayser FH (2003) Safety aspects of enterococci from the medical point of view. Int J Food Microbiol 88(2–3):255–262

    Article  PubMed  CAS  Google Scholar 

  19. Kropinski AM (2006) Phage therapy. Everything old is new again. Can J Infect Dis Med Microbiol 17:297–306

    PubMed  Google Scholar 

  20. Letkiewicz S, Międzyborski R, Fortuna W et al (2010) Eradication of Enterococcus faecalis by phage therapy in chronic bacterial prostatitis—case report. Folia Microbiol 54:457–461

    Article  Google Scholar 

  21. Ma YL, Lu CP (2008) Isolation and identification of a bacteriophage capable of infecting Streptococcus suis type 2 strains. Vet Microbiol 132:340–347

    Article  PubMed  CAS  Google Scholar 

  22. Małek W, Wdowiak-Wróbel S, Bartosik M et al (2009) Characterization of phages virulent for Robinia pseudoacacia Rhizobia. Curr Microbiol 59:187–192

    Article  PubMed  Google Scholar 

  23. Międzybrodzki R, Fortuna W, Weber-Dąbrowska B et al (2007) Phage therapy of staphylococcal infections (including MRSA) may be less expensive than antibiotic treatment. Post Hig Med Dośw 61:461–465

    Google Scholar 

  24. Paisano AF, Spira B, Cai S et al (2004) In vitro antimicrobial effect of bacteriophages on human dentin infected with Enterococcus faecalis ATCC 29212. Oral Microbiol Immunol 19:327–330

    Article  PubMed  CAS  Google Scholar 

  25. Ramírez B, Centrón D, Ramírez MS et al (2006) Isolation and characterization of lytic bacteriophages of Enterococcus spp. Int Congr Ser 1289:162–164. doi:10.1016/j.ics.2005.09.111

    Article  Google Scholar 

  26. Reik R, Tenover FC, Klein E et al (2008) The burden of vancomycin-resistant enterococcal infections in US hospitals, 2003 to 2004. Diagn Microbiol Infect Dis 62:81–85

    Article  PubMed  Google Scholar 

  27. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  28. Shevchenko A, Wilm M, Vorm O et al (1996) Mass spectrometric sequencing of proteins from silver-stained polyacrylamide gels. Anal Chem 68:850–858

    Article  PubMed  CAS  Google Scholar 

  29. Son JS, Jun SY, Kim EB et al (2009) Complete genome sequence of a newly isolated lytic bacteriophage, EFAP-1 of Enterococcus faecalis, and antibacterial activity of its endolysin EFAL-1. J Appl Microbiol. doi:10.1111/j.1365-2672.2009.04576.x

  30. Uchiyama J, Rashel M, Maeda Y et al (2007) Isolation and characterization of a novel Enterococcus faecalis bacteriophage φEF24C as a therapeutic candidate. FEMS Microbiol Lett 278:200–206

    Article  Google Scholar 

  31. Uchiyama J, Rashel M, Takemura I et al (2008) In silico and in vivo evaluation of bacteriophage φEF24C, a candidate for treatment of Enterococcus faecalis infections. Appl Environ Microbiol 74:4149–4163

    Article  PubMed  CAS  Google Scholar 

  32. Uchiyama J, Takemura I, Hayashi I et al (2011) Characterization of lytic enzyme Open Reading Frame 9 (ORF9) derived from Enterococcus faecalis bacteriophage φEF24C. Appl Environ Microbiol 77:580–585

    Article  PubMed  CAS  Google Scholar 

  33. Vinodkumar CS, Srinivasa H, Basavarajappa KG et al (2011) Isolation of bacteriophages to multi-drug resistant Enterococci obtained from diabetic foot: a novel antimicrobial agent waiting in the shelf. Indian J Pathol Microbiol 1:90–95

    Article  Google Scholar 

  34. Yang H, Liang L, Lin S et al (2010) Isolation and characterization of a virulent bacteriophage AB1 of Acinetobacter baumannii. BMC Microbiol 10:131 http://www.biomedcentral.com/1471-2180/10/131

Download references

Acknowledgments

The electron microscopy studies were performed in the Laboratory of Electron Microscopy, Nencki Institute of Experimental Biology, Warsaw, Poland (Electron microscope JEM 1400, installed as part of a project sponsored by EU Structural Funds). This work was supported by Grant N10PC20038 from the Defense Advanced Research Projects Agency (DARPA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sylwia Parasion.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parasion, S., Kwiatek, M., Mizak, L. et al. Isolation and Characterization of a Novel Bacteriophage φ4D Lytic Against Enterococcus faecalis Strains. Curr Microbiol 65, 284–289 (2012). https://doi.org/10.1007/s00284-012-0158-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-012-0158-8

Keywords

Navigation