Skip to main content
Log in

Comparative Phylogenies of Ribosomal Proteins and the 16S rRNA Gene at Higher Ranks of the Class Actinobacteria

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

The 16S rRNA-based hierarchical system is considered to be the backbone of prokaryote taxonomy at the genus level and above. However, in the class Actinobacteria, the topology of the 16S rRNA-based tree is highly unsteady, and relationships between several families and orders are ambiguous. Recently, phylogenomic information was claimed to provide a more comprehensive understanding of prokaryotic systematics in the genomics era. In this article, a comparative phylogenetic analysis of the class Actinobacteria was carried out using 16S rRNA gene sequences and a set of 46 ribosomal proteins (RPs). Phylogenies based on concatenated RP sequences were generally congruent with 16S rRNA phylogenies, but higher bootstrap values supported the branching orders in the former trees. RP-based trees constructed by the maximum-likelihood and neighbor-joining algorithms provided better-defined phylogenetic relationships within the Actinobacteria and clarified the relationships and positions of several orders, such as Micrococcales and Frankiales. The RP-based phylogeny approach may thus provide a sound basis for assessing the Actinobacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Abascal F, Zardoya R, Posada D (2005) ProtTest: selection of best-fit models of protein evolution. Bioinformatics 21:2104–2105

    Article  PubMed  CAS  Google Scholar 

  2. Badger JH, Eisen JA, Ward NL (2005) Genomic analysis of Hyphomonas neptunium contradicts 16S rRNA gene-based phylogenetic analysis: implications for the taxonomy of the orders ‘Rhodobacterales’ and Caulobacterales. Int J Syst Evol Microbiol 55:1021–1026

    Article  PubMed  CAS  Google Scholar 

  3. Castresana J (2000) Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 17:540–552

    Article  PubMed  CAS  Google Scholar 

  4. DeSantis TZ, Hugenholtz P, Keller K, Brodie EL, Larsen N, Piceno YM, Phan R, Andersen GL (2006) NAST: a multiple sequence alignment server for comparative analysis of 16S rRNA genes. Nucleic Acids Res 34:W394–W399

    Article  PubMed  CAS  Google Scholar 

  5. Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum-likelihood approach. J Mol Evol 17:368–376

    Article  PubMed  CAS  Google Scholar 

  6. Garrity GM, Bell JA, Lilburn T (2005) The revised road map to the manual. In: Brenner DJ, Krieg NR, Staley JT (eds) Bergey’s manual of systematic bacteriology, vol 2, 2nd edn. Springer, New York, pp 159–206

    Chapter  Google Scholar 

  7. Garrity GM, Winters M, Searles DB (2001) Taxonomic outline of the prokaryotes: Bergey’s manual of systematic bacteriology, 2nd edn. Release 1.0. http://www.bergeys.org/outlines.html

  8. Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59:307–321

    Article  PubMed  CAS  Google Scholar 

  9. Hall TA (1999) BioEdit, a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  10. Kämpfer P, Glaeser SP (2011) Prokaryotic taxonomy in the sequencing era—the polyphasic approach revisited. Environ Microbiol. doi:10.1111/j.1462-2920.2011.02615.x

    PubMed  Google Scholar 

  11. Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

    Article  PubMed  CAS  Google Scholar 

  12. Larkin MA, Blackshields G, Brown NP et al (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948

    Article  PubMed  CAS  Google Scholar 

  13. Le SQ, Gascuel O (2008) An improved general amino acid replacement matrix. Mol Biol Evol 25:1307–1320

    Article  PubMed  CAS  Google Scholar 

  14. Ludwig W, Euzeby J, Schumann P, Busse HJ, Trujillo ME, Kampfer P, Whitman WB (2011) Road map of the Actinobacteria. http://www.bergeys.org/outlines/bergeys_vol_5_roadmap_outline.pdf

  15. Ludwig W, Klenk HP (2005) Overview: a phylogenetic backbone and taxonomic framework for procaryotic systematics. In: Brenner DJ, Krieg NR, Staley JT (eds) Bergey’s manual of systematic bacteriology, vol 2, 2nd edn. Springer, New York, pp 49–65

    Chapter  Google Scholar 

  16. Ludwig W, Strunk O, Klugbauer S, Klugbauer N, Weizenegger M, Neumaier J, Bachleitner M, Schleifer KH (1998) Bacterial phylogeny based on comparative sequence analysis. Electrophoresis 19:554–568

    Article  PubMed  CAS  Google Scholar 

  17. Posada D (2008) jModelTest: phylogenetic model averaging. Mol Biol Evol 25:1253–1256

    Article  PubMed  CAS  Google Scholar 

  18. Roberts E, Sethi A, Montoya J, Woese CR, Luthey-Schulten Z (2008) Molecular signatures of ribosomal evolution. Proc Natl Acad Sci USA 105:13953–13958

    Article  PubMed  CAS  Google Scholar 

  19. Saitou RR, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 44:406–425

    Google Scholar 

  20. Stackebrandt E, Rainey FA, Ward-Rainey NL (1997) Proposal for a new hierarchic classification system, Actinobacteria classis nov. Int J Syst Bacteriol 47:479–491

    Article  Google Scholar 

  21. Stackebrandt E, Schumann P (2006) Introduction to the taxonomy of Actinobacteria. In: Dworkin M (ed) Prokaryotes. Springer, New York, pp 297–321

    Chapter  Google Scholar 

  22. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  PubMed  CAS  Google Scholar 

  23. Waddell P, Steel M (1997) General time-reversible distances with unequal rates across sites: mixing gamma and inverse Gaussian distributions with invariant sites. Mol Phylogenet Evol 8:398–414

    Article  PubMed  CAS  Google Scholar 

  24. Wang Y, Zhang ZS, Ramanan N (1997) The actinomycete Thermobispora bispora contains two distinct types of transcriptionally active 16S rRNA genes. J Bacteriol 179:3270–3276

    PubMed  CAS  Google Scholar 

  25. Wang Y, Zhang ZS, Ruan JS (1996) A proposal to transfer Microbispora bispora (Lechevalier 1965) to a new genus, Themobispora gen. nov., as Thermobispora bispora comb. nov. Int J Syst Bacteriol 46:933–938

    Article  PubMed  CAS  Google Scholar 

  26. Yap WH, Zhang Z, Wang Y (1999) Distinct types of rRNA operons exist in the genome of the actinomycete Thermomonospora chromogena and evidence for horizontal transfer of an entire rRNA operon. J Bacteriol 181:5201–5209

    PubMed  CAS  Google Scholar 

  27. Zhi XY, Li WJ, Stackebrandt E (2009) An update of the structure and 16S rRNA gene sequence-based definition of higher ranks of the class Actinobacteria, with the proposal of two new suborders and four new families and emended descriptions of the existing higher taxa. Int J Syst Evol Microbiol 59:589–608

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Science Foundation of China (No. 30800003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhitang Lu.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, Z., Zhang, W. Comparative Phylogenies of Ribosomal Proteins and the 16S rRNA Gene at Higher Ranks of the Class Actinobacteria . Curr Microbiol 65, 1–6 (2012). https://doi.org/10.1007/s00284-012-0120-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-012-0120-9

Keywords

Navigation