Skip to main content
Log in

Effect of Farnesol on Structure and Composition of Staphylococcus epidermidis Biofilm Matrix

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Staphylococcus epidermidis is the most frequent cause of nosocomial sepsis and catheter-related infections in which biofilm formation is considered to be one of the main virulence mechanisms. Moreover, their increased resistance to conventional antibiotic therapy enhances the need to develop new therapeutical agents. Farnesol, a natural sesquiterpenoid present in many essential oils, has been described as impairing bacterial growth. The aim of this study was to evaluate the effect of farnesol on the structure and composition of biofilm matrix of S. epidermidis. Biofilms formed in the presence of farnesol (300 μM) contained less biomass, and displayed notable changes in the composition of the biofilm matrix. Changes in the spacial structure were also verified by confocal scanning laser microscopy (CSLM). The results obtained by the quantification of extracellular polymers and by wheat germ agglutinin (WGA) fluorescent detection of glycoproteins containing β(1→4)-N-acetyl-d-glucosamine support the hypothesis that farnesol causes disruption of the cytoplasmic membrane and consequently release of cellular content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Al-Fattani MA, Douglas LJ (2006) Biofilm matrix of Candida albicans and Candida tropicalis: chemical composition and role in drug resistance. J Med Microbiol 55:999–1008

    Article  PubMed  CAS  Google Scholar 

  2. Cerca N, Pier GB, Oliveira R et al (2004) Comparative evaluation of coagulase-negative staphylococci (CoNS) adherence to acrylic by a static method and a parallel-plate flow dynamic method. Res Microbiol 155:755–760

    Article  PubMed  CAS  Google Scholar 

  3. Cerca N, Martins S, Sillankorva S et al (2005) Effects of growth in the presence of subinhibitory concentrations of dicloxacillin on Staphylococcus epidermidis and Staphylococcus haemolyticus biofilms. Appl Environ Microbiol 71:8677–8682

    Article  PubMed  CAS  Google Scholar 

  4. Cerca N, Jefferson KK, Oliveira R et al (2006) Comparative antibody-mediated phagocytosis of Staphylococcus epidermidis cells grown in a biofilm or in planktonic state. Infect Immun 74:4819–4855

    Google Scholar 

  5. Dubois M, Gilles KA, Hamilton JK et al (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356

    Article  CAS  Google Scholar 

  6. Frølund B, Palmgren R, Keiding K et al (1996) Extraction of extracellular polymers from activated sludge using a cation exchange resin. Water Res 30:1749–1758

    Article  Google Scholar 

  7. Gomes FIA, Teixeira P, Azeredo J et al (2009) Effect of farnesol on planktonic and biofilm cells of Staphylococcus epidermidis. Curr Microbiol 59:118–122

    Article  PubMed  CAS  Google Scholar 

  8. Gomes F, Leite B, Teixeira P et al (2011) Farnesol as antibiotics adjuvant in Staphylococcus epidermidis control in vitro. Am J Med Sci 341:191–195

    Article  PubMed  Google Scholar 

  9. Izano EA, Sadovskaya I, Vinogradov E et al (2007) Poly-N-acetylglucosamine mediates biofilm formation and antibiotic resistance in Actinobacillus pleuropneumoniae. Microb Pathog 43:1–9

    Article  PubMed  CAS  Google Scholar 

  10. Jabra-Rizk MA, Meiller TF, James CE et al (2006) Effect of farnesol on Staphylococcus aureus biofilm formation and antimicrobial susceptibility. Antimicrob Agents Chemother 50:1463–1469

    Article  PubMed  CAS  Google Scholar 

  11. Knobloch JK, Osten HV, Horstkotte MA et al (2002) Minimal attachment killing (MAK): a versatile method for susceptibility testing of attached biofilm-positive and negative Staphylococcus epidermidis. Med Microbiol Immunol 191:107–114

    Article  PubMed  CAS  Google Scholar 

  12. Kuźma Ł, Różalski M, Walencka E et al (2007) Antimicrobial activity of diterpenoids from hairy roots of Salvia sclarea L.: salvipisone as a potential anti-biofilm agent active against antibiotic resistant Staphylococci. Phytomedicine 14:31–35

    PubMed  Google Scholar 

  13. Mack D, Haeder M, Siemssen N et al (1996) Association of biofilm production of coagulase-negative staphylococci with expression of a specific polysaccharide intercellular adhesin. J Infect Dis 174:881–884

    Article  PubMed  CAS  Google Scholar 

  14. Neu T, Swerhone GD, Lawrence JR (2001) Assessment of lectin-binding analysis for in situ detection of glycoconjugates in biofilm systems. Microbiology 147:299–313

    PubMed  CAS  Google Scholar 

  15. Otto M (2009) Staphylococcus epidermidis—the “accidental” pathogen. Microbiology 7:555–567

    PubMed  CAS  Google Scholar 

  16. Sandberg M, Määttänen A, Peltonen J et al (2008) Automating a 96-well microtitre plate model for Staphylococcus aureus biofilms: an approach to screening of natural antimicrobial compounds. Int J Antimicrob Agents 32:233–240

    Article  PubMed  CAS  Google Scholar 

  17. Sousa C, Teixeira P, Oliveira R (2009) The role of extracellular polymers on Staphylococcus epidermidis biofilm biomass and metabolic activity. J Basic Microbiol 49:363–370

    Article  PubMed  CAS  Google Scholar 

  18. Teixeira PC, Leite GM, Domingues RJ et al (2007) Antimicrobial effects of a microemulsion and a nanoemulsion on enteric and other pathogens and biofilms. Int J Food Microbiol 118:15–19

    Article  PubMed  CAS  Google Scholar 

  19. Vuong C, Kocianova S, Yao Y et al (2004) Increased colonization of indwelling medical devices by quorum-sensing mutants of Staphylococcus epidermidis in vivo. J Infect Dis 190:1498–1505

    Article  PubMed  Google Scholar 

  20. Ziebuhr W, Hennig S, Eckart M et al (2006) Nosocomial infections by Staphylococcus epidermidis: how a commensal bacterium turns into a pathogen. Int J Antimicrob Agents 28S:S14–S20

    Article  Google Scholar 

Download references

Acknowledgment

Fernanda Gomes and Pilar Teixeira fully acknowledge the financial support of Fundação para a Ciência e Tecnologia (FCT) through the grants SFRH/BD/32126/2006 and SFRH/BPD/26803/2006, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosário Oliveira.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gomes, F., Teixeira, P., Cerca, N. et al. Effect of Farnesol on Structure and Composition of Staphylococcus epidermidis Biofilm Matrix. Curr Microbiol 63, 354 (2011). https://doi.org/10.1007/s00284-011-9984-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00284-011-9984-3

Keywords

Navigation