Skip to main content
Log in

Effect of Farnesol on Planktonic and Biofilm Cells of Staphylococcus epidermidis

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Staphylococcus epidermidis is now amongst the most important pathogenic agents responsible for bloodstream nosocomial infections and for biofilm formation on indwelling medical devices. Its increasing resistance to common antibiotics is a challenge for the development of new antimicrobial agents. Accordingly, the goal of this study was to evaluate the effect of farnesol, a natural sesquiterpenoid, on Staphylococcus epidermidis planktonic and biofilm cells. Farnesol displayed a significant inhibitory effect on planktonic cells. Small concentrations (100 μM) were sufficient to exhibit antibacterial effect on these cells. In biofilm cells the effect of farnesol was not so pronounced and it seems to be strongly dependent on the cells metabolic activity and amount of matrix. Interestingly, the effect of farnesol at 200 μM was similar to the effect of vancomycin at peak serum concentration either in planktonic or biofilm cells. Overall, the results indicate a potential antibacterial effect of farnesol against S. epidermidis, and therefore the possible action of this molecule on the prevention of S. epidermidis related infections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Brehm-Stecher BF, Johnson EA (2003) Sensitization of Staphylococcus aureus and Escherichia coli to antibiotics by the sesquiterpenoids nerolidol, farnesol, bisabolol, and apritone. Antimicrobial Agents Chemother 47:3357–3360

    Article  CAS  Google Scholar 

  2. Cerca N, Pier GB, Oliveira R et al (2004) Comparative evaluation of coagulase-negative staphylococci (CoNS) adherence to acrylic by a static method and a parallel-plate flow dynamic method. Res Microbiol 155:755–760

    Article  PubMed  CAS  Google Scholar 

  3. Cerca N, Martins S, Cerca F et al (2005) Comparative assessment of antibiotic susceptibility of coagulase-negative staphylococci in biofilm versus planktonic culture as assessed by bacterial enumeration or rapid XTT colorimetry. J Antimicrob Chemother 56:331–336

    Article  PubMed  CAS  Google Scholar 

  4. Inoue Y, Shiraishi A, Hada T et al (2004) The antibacterial effects of terpene alcohols on Staphylococcus aureus and their mode of action. FEMS Microbiol Lett 237:325–331

    PubMed  CAS  Google Scholar 

  5. Izano EA, Sadovskaya I, Vinogradov E et al (2007) Poly-N-acetylglucosamine mediates biofilm formation and antibiotic resistance in Actinobacillus pleuropneumoniae. Microb Pathog 43:1–9

    Article  PubMed  CAS  Google Scholar 

  6. Jabra-Rizk MA, Meiller TF, James CE et al (2006) Effect of farnesol on Staphylococcus aureus biofilm formation and antimicrobial susceptibility. Antimicrob Agents Chemother 50:1463–1469

    Article  PubMed  CAS  Google Scholar 

  7. Keren I, Kaldalu N, Spoering A et al (2003) Persister cells and tolerance to antimicrobials. FEMS Microbiol Lett 230:13–18

    Article  Google Scholar 

  8. Kuhn DR, Balkis M, Chandra J et al (2003) Uses and limitations of the XTT assay in studies of Candida growth and metabolism. J Clin Microbiol 41:506–508

    Article  PubMed  CAS  Google Scholar 

  9. Lewis K (2007) Persister cells, dormancy and infectious disease. Nat Rev Microbiol 5:48–56

    Article  PubMed  CAS  Google Scholar 

  10. Oliveira M, Nunes SF, Carneiro C et al (2007) Time course of biofilm formation by Staphylococcus aureus and Staphylococcus epidermidis mastitis isolates. Vet Microbiol 124:187–191

    Article  PubMed  CAS  Google Scholar 

  11. Rupp ME, Ulphani JS, Fey PD et al (1999) Characterization of the importance of polysaccharide intercellular adhesin/hemagglutinin of Staphylococcus epidermidis in the pathogenesis of biomaterial-based infection in a mouse foreign body infection model. Infect Immun 67:2627–2632

    PubMed  CAS  Google Scholar 

  12. Rybak MJ (2006) The pharmacokinetic and pharmacodynamic properties of vancomycin. Clin Infect Dis 42:S35–S39

    Article  PubMed  CAS  Google Scholar 

  13. Sousa C, Henriques M, Azeredo J et al (2008) Staphylococcus epidermidis glucose uptake in biofilm versus planktonic cells. World J Microbiol Biotechnol 24:423–426

    Article  CAS  Google Scholar 

  14. Sousa C, Teixeira P, Oliveira R (2009) The role of extracellular polymers on Staphylococcus epidermidis biofilm biomass and metabolic activity. J Basic Microbiol 49:1–8

    Article  Google Scholar 

  15. Vuong C, Gerke C, Somerville GA et al (2003) Quorum-sensing control of biofilm factors in Staphylococcus epidermidis. J Infect Dis 188:706–718

    Article  PubMed  CAS  Google Scholar 

  16. Wang C, Li M, Dong D et al (2007) Role of ClpP in biofilm formation and virulence of Staphylococcus epidermidis. Microb Infect 9:1376–1383

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Fernanda Gomes and Pilar Teixeira fully acknowledge the financial support of Fundação para a Ciência e Tecnologia (FCT) through the grants SFRH/BD/32126/2006 and SFRH/BPD/26803/2006, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosário Oliveira.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gomes, F.I.A., Teixeira, P., Azeredo, J. et al. Effect of Farnesol on Planktonic and Biofilm Cells of Staphylococcus epidermidis . Curr Microbiol 59, 118–122 (2009). https://doi.org/10.1007/s00284-009-9408-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-009-9408-9

Keywords

Navigation