Skip to main content
Log in

Desulfovibrio legallis sp. nov.: A Moderately Halophilic, Sulfate-Reducing Bacterium Isolated from a Wastewater Digestor in Tunisia

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

A new moderately halophilic sulfate-reducing bacterium (strain H T1 ) was enriched and isolated from a wastewater digestor in Tunisia. Cells were curved, motile rods (2–3 x 0.5 μm). Strain H T1 grew at temperatures between 22 and 43°C (optimum 35°C), and at pH between 5.0 and 9.2 (optimum 7.3–7.5). Strain H T1 required salt for growth (1–45 g of NaCl/l), with an optimum at 20–30 g/l. Sulfate, sulfite, thiosulfate, and elemental sulfur were used as terminal electron acceptors but not nitrate and nitrite. Strain H T1 utilized lactate, pyruvate, succinate, fumarate, ethanol, and hydrogen (in the presence of acetate and CO2) as electron donors in the presence of sulfate as electron acceptor. The main end-products from lactate oxidation were acetate with H2 and CO2. The G + C content of the genomic DNA was 55%. The predominant fatty acids of strain H T1 were C15:0 iso (38.8%), C16:0 (19%), and C14:0 iso 3OH (12.2%), and menaquinone MK-6 was the major respiratory quinone. Phylogenetic analysis of the small-subunit (SSU) ribosomal RNA (rRNA) gene sequence indicated that strain H T1 was affiliated to the genus Desulfovibrio. On the basis of SSU rRNA gene sequence comparisons and physiological characteristics, strain H T1 is proposed to be assigned to a novel species of sulfate reducers of the genus Desulfovibrio, Desulfovibrio legallis sp. nov. (= DSM 19129T = CCUG 54389T).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Barton LL, Fauque GD (2009) Biochemistry, physiology and biotechnology of sulfate-reducing bacteria. In: Laskin A, Gadd G, Sariasiani S (eds) Advances in applied microbiology, vol 68, Chapter 2. Elsevier Inc, San Diego, pp 41–98

    Chapter  Google Scholar 

  2. Ben Dhia Thabet O, Bouallagui H, Cayol JL, Ollivier B, Fardeau ML, Hamdi M (2009) Anaerobic degradation of landfill leachate using an upflow anaerobic fixed-bed reactor with microbial sulfate reduction. J Hazard Mater 167:1133–1140

    Article  Google Scholar 

  3. Benson DA, Boguski MS, Lipman DJ, Ostell J, Ouellette BF, Rapp BA, Wheeler DL (1999) GenBank. Nucleic Acids Res 27:12–17

    Article  CAS  PubMed  Google Scholar 

  4. Cashion P, Holder-Franklin MA, McCully J, Franklin M (1977) A rapid method for the base ratio determination of bacterial DNA. Anal Biochem 81:461–466

    Article  CAS  PubMed  Google Scholar 

  5. Collins MD, Widdel F (1986) Respiratory quinones of sulphate-reducing and sulphur-reducing bacteria: a systematic investigation. Syst Appl Microbiol 8:8–18

    CAS  Google Scholar 

  6. Cord-Ruwisch R (1985) A quick method for the determination of dissolved and precipitated sulfides in cultures of sulfate-reducing bacteria. J Microbiol Methods 4:33

    Article  CAS  Google Scholar 

  7. Devereux R, He SH, Doyle CL, Orkland S, Stahl DA, LeGall J, Whitman WB (1990) Diversity and origin of Desulfovibrio species: phylogenetic definition of a family. J Bacteriol 172:3609–3619

    CAS  PubMed  Google Scholar 

  8. Fardeau ML, Ollivier B, Patel BKC, Magot M, Thomas P, Rimbault A, Rocchiccioli AF, Garcia JL (1997) Thermotoga hypogea sp. nov., a xylanolytic, thermophilic bacterium from an oil-producing well. Int J Syst Bacteriol 47:1013–1019

    Article  CAS  PubMed  Google Scholar 

  9. Fauque GD (1995) Ecology of sulfate-reducing bacteria. In: Barton LL (ed) Biotechnology handbooks: sulfate-reducing bacteria, chapter 8. Plenum Press, New York, pp 217–241

    Google Scholar 

  10. Fauque G, Ollivier B (2004) Anaerobes: the sulfate-reducing bacteria as an example of metabolic diversity. In: Bull AT (ed) Microbial diversity and bioprospecting, Chapter 17. ASM Press, Washington, pp 169–176

    Google Scholar 

  11. Fröhlich J, Sass H, Babenzien HD, Kuhnigk T, Varma A, Saxena S, Nalepa C, Pfeiffer P, König H (1999) Isolation of Desulfovibrio intestinalis sp. nov. from the hindgut of the lower termite Mastotermes darwiniensis. Can J Microbiol 45:145–152

    Article  PubMed  Google Scholar 

  12. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  13. Haouari O, Fardeau ML, Cayol JC, Fauque G, Casiot C, Elbaz-Poulichet F, Hamdi M, Ollivier B (2008) Thermodesulfovibrio hydrogeniphilus sp. nov., a new thermophilic sulphate-reducing bacterium isolated from a Tunisian hot spring. Syst Appl Microbiol 31:38–42

    Article  CAS  PubMed  Google Scholar 

  14. Hungate RE (1969) A roll-tube method for the cultivation of strict anaerobes. In: Norris JR, Ribbons DW (eds) Methods in microbiology, vol 3B. Academic Press, New York, pp 117–132

    Google Scholar 

  15. Jukes TH, Cantor CR (1969) Evolution of protein molecules. In: Munro HN (ed) Mammalian protein metabolism. Academic Press, New York, pp 211–232

    Google Scholar 

  16. Klouche N, Basso O, Lascourrèges JF, Cayol JC, Thomas P, Fauque G, Fardeau ML, Magot M (2009) Desulfocurvus vexinensis gen. nov., sp. nov., a sulphate-reducing bacterium isolated from a deep subsurface aquifer. Int J Syst Evol Microbiol 59:3100–3104

    Article  CAS  PubMed  Google Scholar 

  17. Loubinoux J, Bisson-Boutelliez C, Miller N, Le Faou A (2002) Isolation of the provisionally named Desulfovibrio fairfieldensis from human periodontal pockets. Oral Microbiol Immunol 17:321–323

    Article  CAS  PubMed  Google Scholar 

  18. Loubinoux J, Valente FMA, Pereira IAC, Costa A, Grimont PAD, Le Faou A (2002) Reclassification of the only species of the genus Desulfomonas, Desulfomonas pigra, as Desulfovibrio piger comb. nov. Int J Syst Evol Microbiol 52:1305–1308

    Article  CAS  PubMed  Google Scholar 

  19. Macfarlane GT, Cummings JH, Macfarlane S (2007) Sulphate-reducing bacteria and the human large intestine. In: Barton LL, Hamilton WA (eds) Sulphate-reducing bacteria. Environmental and engineered systems, chapter 18. Cambridge University Press, Cambridge, pp 503–521

    Google Scholar 

  20. Maidak BL, Cole JR, Lilburn TG, Parker CT Jr, Saxman PR, Farris RJ, Garrity GM, Olsen GJ, Schmidt TM, Tiedje JM (2001) The RDP-II (Ribosomal Database Project). Nucleic Acids Res 29:173–174

    Article  CAS  PubMed  Google Scholar 

  21. Mesbah M, Premachandran U, Whitman WB (1989) Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167

    Article  CAS  Google Scholar 

  22. Moura JJG, Gonzalez P, Moura I, Fauque G (2007) Dissimilatory nitrate and nitrite ammonification by sulphate-reducing eubacteria. In: Barton LL, Hamilton WA (eds) Sulphate-reducing bacteria. Environmental and engineered systems, chapter 8. Cambridge University Press, Cambridge, pp 241–264

    Google Scholar 

  23. Ollivier B, Cayol JL, Fauque G (2007) Sulphate-reducing bacteria from oil field environments and deep-sea hydrothermal vents. In: Barton LL, Hamilton WA (eds) Sulphate-reducing bacteria. Environmental and engineered systems, chapter 10. Cambridge University Press, Cambridge, pp 305–328

    Google Scholar 

  24. Postgate JR (1959) A diagnostic reaction of Desulphovibrio desulphuricans. Nature 183:481–482

    Article  CAS  PubMed  Google Scholar 

  25. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  26. Ueki A, Suto T (1979) Cellular fatty acid composition of sulfate-reducing bacteria. J Gen Appl Mocrobiol 25:185–196

    Article  CAS  Google Scholar 

  27. Vainshtein M, Hippe H, Kroppenstedt RM (1992) Cellular fatty acid composition of Desulfovibrio species and its use in classification of sulfate-reducing bacteria. Syst Appl Microbiol 15:554–566

    CAS  Google Scholar 

  28. Warren YA, Citron DM, Vreni Meriam C, Goldstein EJC (2005) Biochemical differentiation and comparison of Desulfovibrio species and other phenotypically similar genera. J Clin Microbiol 43:4041–4045

    Article  CAS  PubMed  Google Scholar 

  29. Widdel F, Pfennig N (1984) Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids. 1. Isolation of new sulfate-reducing bacteria enriched with acetate from saline environments. Description of Desulfobacter postgatei gen. nov., sp. nov. Arch Microbiol 129:395–400

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marie-Laure Fardeau.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thabet, O.B.D., Wafa, T., Eltaief, K. et al. Desulfovibrio legallis sp. nov.: A Moderately Halophilic, Sulfate-Reducing Bacterium Isolated from a Wastewater Digestor in Tunisia. Curr Microbiol 62, 486–491 (2011). https://doi.org/10.1007/s00284-010-9733-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-010-9733-z

Keywords

Navigation