Skip to main content
Log in

Expression and Assembly of Recombinant Surface Layer Proteins in Saccharomyces cerevisiae

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Most bacterial surface layers (SLs) are formed by self-assembly of a single type of protein. Native and recombinant surface layer monomers are capable to self-assemble on solid substrates and in solution to highly regular nanosized arrays which make them attractive for nanobiotechnological applications. In this study, we expressed the surface layer protein SbsC of Bacillus stearothermophilus ATTC 12980, tagged with Enhanced Green Fluorescent Protein, in the yeast Saccharomyces cerevisiae. We observed a network of tubular structures in the cytosol of the transformed yeast cells that did not colocalize with microtubules or the actin cytoskeleton. Time-resolved analysis of the formation of these structures during vegetative growth and sporulation was investigated by live fluorescence microscopy. While in meiosis ascospores seemed to receive assembled structures from the diploid cells, during mitosis, SL structures were formed de novo in the buds. SL assembly always started with the appearance of a dot-like structure in the cytoplasm, suggesting a single nucleation point.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Sleytr UB, Bayley H, Sara M et al (1997) VI. Applications of S-layers. FEMS Microbiol Rev 20:151–175

    Article  CAS  PubMed  Google Scholar 

  2. Beveridge TJ (1994) Bacterial S-layers. Curr Opin Struct Biol 4:204–212

    Article  CAS  Google Scholar 

  3. Claus H, Akca E, Debaerdemaeker T et al (2005) Molecular organization of selected prokaryotic S-layer proteins. Can J Microbiol 51:731–743

    Article  CAS  PubMed  Google Scholar 

  4. Sleytr UB, Sara M, Pum D et al (2001) Characterization and use of crystalline bacterial cell surface layers. Prog Surf Sci 68:231–278

    Article  CAS  Google Scholar 

  5. Sleytr UB, Huber C, Ilk N et al (2007) S-layers as a tool kit for nanobiotechnological applications. FEMS Microbiol Lett 267:131–144

    Article  CAS  PubMed  Google Scholar 

  6. Schäffer C, Messner P (2004) Review: Surface-layer glycoproteins: an example for the diversity of bacterial glycosylation with promising impacts on nanobiotechnology. Glycobiology 14:31R–42R

    Article  PubMed  Google Scholar 

  7. Engelhardt H (2007) Are S-layers exoskeletons? The basic function of protein surface layers revisited. J Struct Biol 160:5–124

    Google Scholar 

  8. Merroun ML, Raff J, Rossberg A et al (2005) Complexation of uranium by cells and S-layer sheets of Bacillus sphaericus JG-A12. App Environ Microbiol 71:5532–5543

    Article  CAS  Google Scholar 

  9. Kern J, Schneewind O (2010) BslA, the S-layer adhesion of B. anthracis, is a virulence factor for anthrax pathogenesis. Mol Microbiol 75:324–332

    Article  CAS  PubMed  Google Scholar 

  10. Sleytr UB, Beveridge TJ (1999) Bacterial S-layers. Trends Microbiol 6:253–260

    Article  Google Scholar 

  11. Beveridge TJ, Pouwels PH, Sára M et al (1997) Functions of S-layers. FEMS Microbiol Rev 20:99–149

    Article  CAS  PubMed  Google Scholar 

  12. Pavkov T, Egelseer EM, Tesarz M et al (2008) The structure and binding behavior of the bacterial cell surface layer protein SbsC. Structure 16:1226–1237

    Article  CAS  PubMed  Google Scholar 

  13. Schultze-Lam S, Harauz G, Beveridge TJ (1992) Participation of a cyanobacterial S layer in fine-grain mineral formation. J Bacteriol 174:7971–7981

    CAS  PubMed  Google Scholar 

  14. Smarda J, Smajs D, Komrska J et al (2002) S-layers on cell walls of cyanobacteria. Micron 33:257–277

    Article  CAS  PubMed  Google Scholar 

  15. Ilk N, Egelseer EM, Ferner-Ortner J et al (2008) Surfaces functionalized with self-assembling S-layer fusion proteins for nanobiotechnological applications. Colloids Surf A: Physicochem Eng Asp. 321:163–167

    Article  CAS  Google Scholar 

  16. Sleytr UB, Messner P, Pum D et al (1999) Crystalline bacterial cell surface layers (S layers): from supramolecular cell structure to biomimetics and nanotechnology. Angew Chem Int Ed 38:1034–1054

    Article  CAS  Google Scholar 

  17. Tang J, Ebner A, Kraxberger B et al (2009) Detection of metal binding sites on functional S-layer nanoarrays using single molecule force spectroscopy. J Struct Biol 168:217–222

    Article  CAS  PubMed  Google Scholar 

  18. Egelseer EM, Danhorn T, Pleschberger M et al (2001) Characterization of an S-layer glycoprotein produced in the course of S-layer variation of Bacillus stearothermophilus ATCC 12980 and sequencing and cloning of the sbsD gene encoding the protein moiety. Arch Microbiol 177:70–80

    Article  CAS  PubMed  Google Scholar 

  19. Jarosch M, Egelseer EM, Huber C et al (2001) Analysis of the structure-function relationship of the S-layer protein SbsC of Bacillus stearothermophilus ATCC 12980 by producing truncated forms. Microbiology 147:1353–1363

    CAS  PubMed  Google Scholar 

  20. Blecha A, Zarschler K, Sjollema KA et al (2005) Expression and cytosolic assembly of the S-layer fusion protein `in eukaryotic cells. Microb Cell Fact 4:1–11

    Article  Google Scholar 

  21. Niedenthal RK, Riles L, Johnston M et al (1996) Green fluorescent protein as a marker for gene expression and subcellular localization in budding yeast. Yeast 12:773–786

    Article  CAS  PubMed  Google Scholar 

  22. Herskowitz I (1988) Life cycle of the budding yeast Saccharomyces cerevisiae. Microbiol Rev 52:536–553

    CAS  PubMed  Google Scholar 

  23. Tanaka K, Mukae N, Dewar H et al (2005) Molecular mechanisms of kinetochore capture by spindle microtubules. Nature 434:987–994

    Article  CAS  PubMed  Google Scholar 

  24. Mumberg D, Müller R, Funk M (1995) Yeast vectors for the controlled expression of heterologous proteins in different genetic backgrounds. Gene 156:119–122

    Article  CAS  PubMed  Google Scholar 

  25. Gietz RD, Schiestl RH, Willems AR et al (1995) Studies on the transformation of intact yeast cells by the LiAc/SS-DNA/PEG procedure. Yeast 11:355–360

    Article  CAS  PubMed  Google Scholar 

  26. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  PubMed  Google Scholar 

  27. Xu EY, Zawadzki KA, Broach JR (2006) Single-cell observations reveal intermediate transcriptional silencing states. Mol Cell 23:219–229

    Article  CAS  PubMed  Google Scholar 

  28. Amberg DC (1998) Three-dimensional imaging of the yeast actin cytoskeleton through the budding cell cycle. Mol Biol Cell 9:3259–3262

    CAS  PubMed  Google Scholar 

  29. Thevelein JM, den Hollander JA, Shulman RC (1984) Trehalase and the control of dormancy and induction of germination in fungal spores. Trends Biochem Sci 9:495–497

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by Research Training Group Nano- and Biotechnologies for Packaging of Electronic Systems (German Research Foundation, DFG 1401/1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nuriye Korkmaz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Korkmaz, N., Ostermann, K. & Rödel, G. Expression and Assembly of Recombinant Surface Layer Proteins in Saccharomyces cerevisiae . Curr Microbiol 62, 366–373 (2011). https://doi.org/10.1007/s00284-010-9715-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-010-9715-1

Keywords

Navigation