Skip to main content
Log in

Four Pathogenic Candida Species Differ in Salt Tolerance

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

The virulence of Candida species depends on many environmental conditions, including extracellular pH and concentration of alkali metal cations. Tests of the tolerance/sensitivity of four pathogenic Candida species (C. albicans, C. dubliniensis, C. glabrata, and C. parapsilosis) to alkali metal cations under various growth conditions revealed significant differences among these species. Though all of them can be classified as rather osmotolerant yeast species, they exhibit different levels of tolerance to different salts. C. parapsilosis and C. albicans are the most salt-tolerant in general; C. dubliniensis is the least tolerant on rich YPD media and C. glabrata on acidic (pH 3.5) minimal YNB medium. C. dubliniensis is relatively salt-sensitive in spite of its ability to maintain as high intracellular K+/Na+ ratio as its highly salt-tolerant relative C. albicans. On the other hand, C. parapsilosis can grow in the presence of very high external NaCl concentrations in spite of its high intracellular Na+ concentrations (and thus lower K+/Na+ ratio) and thus resembles salt-tolerant (halophilic) Debaryomyces hansenii.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Kutty SN, Philp R (2008) Marine yeasts—a review. Yeast 25:465–483

    Article  CAS  PubMed  Google Scholar 

  2. Butinar L, Santos S, Spencer-Martins I, Oren A, Gunde-Cimerman N (2005) Yeast diversity in hypersaline habitats. FEMS Microbiol Lett 244:229–234

    Article  CAS  PubMed  Google Scholar 

  3. Gadanho M, Sampaio J (2005) Occurrence and diversity of yeasts in the mid-atlantic ridge hydrothermal fields near the Azores Archipelago. Microb Ecol 50:408–417

    Article  CAS  PubMed  Google Scholar 

  4. Garcia SC, Moretti MB, Ramos E, Batlle A (1997) Carbon and nitrogen sources regulate delta-aminolevulinic acid and gamma-aminobutyric acid transport in Saccharomyces cerevisiae. Int J Biochem Cell Biol 29:1097–1101

    Article  CAS  Google Scholar 

  5. Silva-Graca M, Neves L, Lucas C (2003) Outlines for the definition of halotolerance/halophily in yeasts: Candida versatilis (halophila) CBS4019 as the archetype? FEMS Yeast Res 3:347–362

    Article  CAS  PubMed  Google Scholar 

  6. Krauke Y, Sychrova H (2008) Functional comparison of plasma-membrane Na+/H+ antiporters from two pathogenic Candida species. BMC Microbiol 8:80. doi:10.1186/1471-2180-8-80

    Article  PubMed  Google Scholar 

  7. Page MJ, Di Cera E (2006) Role of Na+ and K+ in enzyme function. Physiol Rev 86:1049–1092

    Article  CAS  PubMed  Google Scholar 

  8. Banuelos MA, Sychrova H, Bleykasten-Grosshans C, Souciet JL, Potier S (1998) The Nha1 antiporter of Saccharomyces cerevisiae mediates sodium and potassium efflux. Microbiology-UK 144:2749–2758

    Article  CAS  Google Scholar 

  9. Watanabe H, Azuma M, Igarashi K, Ooshima H (2006) Relationship between cell morphology and intracellular potassium concentration in Candida albicans. J Antibiot 59:281–287

    Article  CAS  PubMed  Google Scholar 

  10. Hermann P, Forgacs E, Gal B, Lenkey G, Nagy F, Rozgonyi F (2003) Effects of alkali metal ions on some virulence traits of Candida albicans. Folia Microbiol 48:173–176

    Article  CAS  Google Scholar 

  11. Maresova L, Sychrova H (2007) Applications of a microplate reader in yeast physiology research. Biotechniques 43:667–672

    Article  CAS  PubMed  Google Scholar 

  12. Kinclova O, Ramos J, Potier S, Sychrova H (2001) Functional study of the Saccharomyces cerevisiae Nha1p C-terminus. Mol Microbiol 40:656–668

    Article  CAS  PubMed  Google Scholar 

  13. Sychrova H (2004) Yeast as a model organism to study transport and homeostasis of alkali metal cations. Physiol Res 53:91–98

    Google Scholar 

  14. Rodriguez-Navarro A (2000) Potassium transport in fungi and plants. Biochim Biophys A 1469:1–30

    CAS  Google Scholar 

  15. Almagro A, Prista C, Castro S, Quintas C, Madeira-Lopes A, Ramos J, Loureiro-Dias MC (2000) Effects of salts on Debaryomyces hansenii and Saccharomyces cerevisiae under stress conditions. Int J Food Microbiol 56:191–197

    Article  CAS  PubMed  Google Scholar 

  16. Enjalbert B, Moran GP, Vaughan C, Yeomans T, MacCallum DM, Quinn J, Coleman DC, Brown AJP, Sullivan DJ (2009) Genome-wide gene expression profiling and a forward genetic screen show that differential expression of the sodium ion transporter Ena21 contributes to the differential tolerance of Candida albicans and Candida dubliniensis to osmotic stress. Mol Microbiol 72:216–228

    Article  CAS  PubMed  Google Scholar 

  17. Kinclova-Zimmermannova O, Sychrova H (2007) Plasma-membrane Cnh1 Na+/H+ antiporter regulates potassium homeostasis in Candida albicans. Microbiology 153:2603–2612

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This study was supported by the EU grant MRTN-CT-2004-512481 CanTrain and Czech grants LC531 and AV0Z50110509.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hana Sychrova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krauke, Y., Sychrova, H. Four Pathogenic Candida Species Differ in Salt Tolerance. Curr Microbiol 61, 335–339 (2010). https://doi.org/10.1007/s00284-010-9616-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-010-9616-3

Keywords

Navigation