Skip to main content
Log in

Soybean PM2 Protein (LEA3) Confers the Tolerance of Escherichia coli and Stabilization of Enzyme Activity Under Diverse Stresses

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Late embryogenesis abundant (LEA) proteins are closely associated with the tolerance of diverse stresses in organisms. To elucidate the function of group 3 LEA proteins, the soybean PM2 protein (LEA3) was expressed in E. coli and the protective function of the PM2 protein was assayed both in vivo and in vitro. The results of a spot assay and survival ratio demonstrated that the expression of the PM2 protein conferred the tolerance to the E. coli recombinant for different temperature conditions (4, −20 or 50°C) or high-salinity stresses (120 mmol/l MgCl2 or 120 mmol/l CaCl2). In addition, it was demonstrated that the in vitro addition of the PM2 protein could prevent the lactate dehydrogenase (LDH) inactivation normally induced by freeze–thaw. In the 62°C condition, the PM2 protein (1:5 mass ratio to LDH) effectively prevented the LDH thermo-denaturation by acting synergistically with trehalose (62.5 μg/ml), although the PM2 protein alone at this concentration showed little protective effect on LDH activity. Furthermore, the results showed that the PM2 protein could partially prevent the thermo-denaturation of the bacterial proteome after boiling for 2 min. Based on these results, we propose that the PM2 protein itself, or together with trehalose, conferred the tolerance to the E. coli recombinant against diverse stresses by protecting proteins and enzyme activity under low- or high- temperature conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Battaglia M, Olvera-Carrillo Y, Garciarrubio A, Campos F, Covarrubias AA (2008) The enigmatic LEA proteins and other hydrophilins. Plant Physiol 148:6–24

    Article  CAS  PubMed  Google Scholar 

  2. Bies-Etheve N, Gaubier-Comella P, Debures A, Lasserre E, Jobet E, Raynal M, Cooke R, Delseny M (2008) Inventory, evolution and expression profiling diversity of the LEA (late embryogenesis abundant) protein gene family in Arabidopsis thaliana. Plant Mol Biol 67:107–124

    Article  CAS  PubMed  Google Scholar 

  3. Dure L (1981) Developmental biochemistry of cottonseed embryogenesis and germination: changing messenger ribonucleic acid populations as shown by in vitro and in vivo protein synthesis. Biochemistry 20:4162–4168

    Article  CAS  PubMed  Google Scholar 

  4. Dure L (1993) A repeating 11-mer amino acid motif and plant desiccation. Plant J 3:363–369

    Article  CAS  PubMed  Google Scholar 

  5. Makarova KS, Aravind L, Wolf YI, Tatusov RL, Minton KW, Koonin EV, Daly MJ (2001) Genome of the extremely radiation-resistant bacterium Deinococcus radiodurans viewed from the perspective of comparative genomics. Microbiol Mol Biol Rev 65:44–79

    Article  CAS  PubMed  Google Scholar 

  6. Tanaka S, Ikedab K, Miyasaka H (2004) Isolation of a new member of group 3 late embryogenesis abundant protein gene from a halotolerant green alga by a functional expression screening with cyanobacterial cells. FEMS Microbiol Lett 236:41–45

    Article  CAS  PubMed  Google Scholar 

  7. Browne J, Tunnacliffe A, Burnell A (2002) A hydrobiosis: plant desiccation gene found in a nematode. Nature 416:38

    Article  CAS  PubMed  Google Scholar 

  8. Babu RC, Zhang JX, Blum A, Ho TD, Wu R, Nguyen HT (2004) HVA1, a LEA gene from barley confers dehydration tolerance in transgenic rice (Oryza sativa L.) via cell membrane protection. Plant Sci 166:855–862

    Article  CAS  Google Scholar 

  9. Sivamani E, Bahieldin A, Wraith JM, Al-Niemi T, Dyer WE, Ho TD, Qu R (2000) Improved biomass productivity and water use efficiency under water deficit conditions in transgenic wheat constitutively expressing the barley HVA1 gene. Plant Sci 155:1–9

    Article  CAS  PubMed  Google Scholar 

  10. Zhang L, Akinori O, Masamichi T (2000) Expression of plant group 2 and group 3 lea genes in Saccharomyces cerevisiae revealed functional divergence among LEA proteins. J Biochem 127:611–616

    CAS  PubMed  Google Scholar 

  11. Iturriaga G, Schneider K, Salamini F, Bartels D (1992) Expression of desiccation-related proteins from the resurrection plant in transgenic tobacco. Plant Mol Biol 20:555–558

    Article  CAS  PubMed  Google Scholar 

  12. Wise MJ, Tunnacliffe A (2004) POPP the question: what do LEA proteins do? Trends Plant Sci 9:13–17

    Article  CAS  PubMed  Google Scholar 

  13. Tolleter D, Jaquinod M, Mangavel C, Passirani C, Saulnier P, Manon S, Teyssier E, Payet N, Avelange-Macherel MH, Macherel D (2007) Structure and function of a mitochondrial late embryogenesis abundant protein are revealed by desiccation. Plant Cell 19:1580–1589

    Article  CAS  PubMed  Google Scholar 

  14. Tunnacliffe A, Wise MJ (2007) The continuing conundrum of the LEA proteins. Naturwissenschaften 94:791–812

    Article  CAS  PubMed  Google Scholar 

  15. Goyal K, Walton LJ, Tunnacliffe A (2005) LEA proteins prevent protein aggregation due to water stress. Biochem J 388:151–157

    Article  CAS  PubMed  Google Scholar 

  16. Reyes JL, Campos F, Wei H, Arora R, Yang Y, Karlson D, Covarrubias A (2008) Functional dissection of hydrophilins during in vitro freeze protection. Plant Cell Environ 31:1781–1790

    Article  CAS  PubMed  Google Scholar 

  17. Hsing YC, Chen ZY, Chow TY (1992) Nucleotide sequences of a soybean complementary DNA encoding a 50-Kilodalton late embryogenesis abundant protein. Plant Physiol 99:354–355

    Article  CAS  PubMed  Google Scholar 

  18. Liu Y, Zheng Y (2005) PM2, a group 3 LEA protein from soybean, and its 22-mer repeating region confer salt tolerance in Escherichia coli. Biochem Biophys Res Commun 331:325–332

    Article  CAS  PubMed  Google Scholar 

  19. Lan Y, Cai D, Zheng Y (2005) Expression in Escherichia coli of three different soybean late embryogenesis abundant (LEA) genes to investigate enhanced stress tolerance. J Integr Plant Biol 47(5):613–621

    Article  CAS  Google Scholar 

  20. Yu Y, Sun H, Zheng Y, Lan Y, Xu S, Tang Y, Ma X (2004) Isolation and characterization of genes related to salt-tolerance in soybean. J Shenzhen Univ 21(4):324–330

    CAS  Google Scholar 

  21. Liu D, Lu Z, Mao Z, Liu S (2009) Enhanced thermotolerance of E. coli by expressed OsHsp90 from rice (Oryza sativa L.). Curr Microbiol 58:129–133

    Article  CAS  PubMed  Google Scholar 

  22. Kovacs D, Kalmar E, Torok Z, Tompa P (2008) Chaperone activity of ERD10 and ERD14, two disordered stress-related plant proteins. Plant Physiol 147:381–390

    Article  CAS  PubMed  Google Scholar 

  23. Kandror O, DeLeon A, Goldberg AL (2002) Trehalose synthesis is induced upon exposure of Escherichia coli to cold and is essential for viability at low temperatures. Proc Natl Acad Sci 99:9727–9732

    Article  CAS  PubMed  Google Scholar 

  24. Sahi C, Singh A, Kumar K, Blumwald E, Grover A (2006) Salt tolerance response in rice: genetics, molecular biology, and comparative genomics. Funct Integr Genomics 6:263–284

    Article  CAS  PubMed  Google Scholar 

  25. Hara M, Shinoda Y, Tanaka Y, Kuboi T (2009) DNA binding of citrus dehydrin promoted by zinc ion. Plant Cell Environ 32:532–541

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science Foundation of China (30470107, 30670180, 30811130217), and SZU R/D Fund (200630).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yizhi Zheng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Y., Zheng, Y., Zhang, Y. et al. Soybean PM2 Protein (LEA3) Confers the Tolerance of Escherichia coli and Stabilization of Enzyme Activity Under Diverse Stresses. Curr Microbiol 60, 373–378 (2010). https://doi.org/10.1007/s00284-009-9552-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-009-9552-2

Keywords

Navigation