Skip to main content
Log in

Bioproduction of Ascorbic Acid in Root Nodule and Root of the Legume Pulse Phaseolus mungo

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

The root nodules of Phaseolus mungo (L.), a herbaceous leguminous pulse, contain high amounts of ascorbic acid (AsA). A glucose pool present in the nodule might serve as precursor for AsA production. From root nodule, a Rhizobium sp. was isolated. The symbiont produced a large amount of AsA (290.5 μg/ml) from glucose-supplemented basal medium. The production of AsA by the symbiont was much greater than that of the control when the glucose (0.5%)-supplemented mineral medium was enriched with thiamine hydrochloride (20 μg/100 ml), biotin (20 μg/100 ml), and L-asparagine (0.2%). The possible role of the rhizobial production of AsA on rhizobia–legume symbiosis is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Arrigoni O, De Tullio MC (2002) Ascorbic acid: Much more than an antioxidant. Biochim Biophys Acta 1569:1–9

    PubMed  CAS  Google Scholar 

  2. Bremus C, Herrmann U, Bringer-Meyer S, Sahm H (2006) The use of microorganisms in l-ascorbic acid production. J Biotechnol 124(1):196–205

    Article  PubMed  CAS  Google Scholar 

  3. Conn HJ, Jennison MW, Week DB (1957) Routine tests for the identification of bacteria. In: Conn HJ (ed) Manual of microbiological methods. McGraw-Hill, New York, NY, pp 140–168

    Google Scholar 

  4. Dubois M, Gilles KA, Hamilton JK, Rebers RA, Smith F (1956) Colorimetric method for determination of sugar and related substances. Anal Chem 28(3):350–356

    Article  CAS  Google Scholar 

  5. Hunter WJ (1989) Indole-3-acetic acid production by bacteroids from soybean root nodules. Physiol Plant 76:31–36

    Article  CAS  Google Scholar 

  6. Jordan DC (1984) Rhizobiaceae. In: Krieg NR, Holt JG (eds) Bergey’s manual of systematic bacteriology, vol. 1. Williams and Wilkins, Baltimore, MD, pp 235–240

    Google Scholar 

  7. Lee SK, Kader AA (2000) Prehervest and postharvest factors influencing vitamin C content of horticultural crops. Post Harv Biol Technol 20:207–220

    Article  CAS  Google Scholar 

  8. Matamoros MA, Loscos J, Coronado MJ, Ramos J, Sato S, Testillano PS et al (2006) Biosynthesis of ascorbic acid in legume root nodules. Plant Physiol 141:1068–1077

    Article  PubMed  CAS  Google Scholar 

  9. Oser BL (1979) Hawk’s physiological chemistry. McGraw Hill, New Delhi, India

    Google Scholar 

  10. Panse VG, Sukhatme PV (1985) Statistical methods for agricultural workers, 4th ed. Indian Council of Agricultural Research, New Delhi, India, pp 145–156

    Google Scholar 

  11. Pastori G, Kiddle G, Antoniw J, Bernard S, Veljovic-Jovanovic S, Verrier PJ et al (2003) Leaf vitamin C contents modulate plant defense transcripts and regulate genes that control development through hormone signaling. Plant Cell 15:939–951

    Article  PubMed  CAS  Google Scholar 

  12. Puppo A, Groten K, Bastian F, Carzaniga R, Soussi M, Lucas MM et al (2005) Legume nodule senescence: roles for redox and hormone signaling in the orchestration of the natural aging process. New Phytol 165:683–701

    Article  PubMed  CAS  Google Scholar 

  13. Skerman VBD (1959) A guide to the identification of the genera of bacteria with methods and digests of generic characteristics. Williams and Wilkins, Baltimore, MD, pp 189–191

    Google Scholar 

  14. Smirnoff N (2000) Ascorbate biosynthesis and function in photoprotection. Philos Trans R Soc Lond B Biol Sci 355:1455–1464

    Article  PubMed  CAS  Google Scholar 

  15. Smirnoff N (1996) The function and metabolism of ascorbic acid in plants. Ann Bot 78:661–669

    Article  CAS  Google Scholar 

  16. Valpuesta V, Botella MA (2004) Biosynthesis of L-ascorbic acid in plants: New pathways for an old antioxidant. Trends Plant Sci 9:573–577

    Article  PubMed  CAS  Google Scholar 

  17. Vincent JM (1974) Root nodule symbiosis with Rhizobium. In: Quespel A (ed) The biology of nitrogen fixation. North Holland Publishing, Amsterdam, The Netherlands, pp 265–341

    Google Scholar 

  18. Wheeler GL, Jones MA, Smirnoff N (1998) The biosynthetic pathway of vitamin C in higher plants. Nature 393:365–369

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. K. Maiti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghosh, S., Maiti, T.K. & Basu, P.S. Bioproduction of Ascorbic Acid in Root Nodule and Root of the Legume Pulse Phaseolus mungo . Curr Microbiol 56, 495–498 (2008). https://doi.org/10.1007/s00284-008-9109-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-008-9109-9

Keywords

Navigation