Skip to main content
Log in

Changes in Bacterial Communities Accompanied by Aggregation in a Fed-Batch Composting Reactor

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

The contents of fed-batch composting (FBC) reactors often aggregate after prolonged operation. This process leads to irreversible breakdown of the decomposition reaction and possible alteration of the bacterial communities. We compared the structures of bacterial communities in reactors under aggregate and optimal conditions. The results of 16S rRNA gene clone analysis showed that populations of the family Bacillaceae (such as Bacillus spp., Cerasibacillus spp., Gracilibacillus spp.), which dominate (98%) under optimal condition, were significantly decreased under aggregate condition. In contrast, populations of the family Staphylococcaceae considerably increased after aggregation and accounted for 53% of the total. Phylogenetic analysis also showed that anaerobes or facultative anaerobes related to Tetragenococcus halophilus, Atopostipes suicloacalis, Jeotgalicoccus pinnipedialis, and Staphylococcus spp. were dominant in the aggregates. These results suggested that aerobic Gram-positive bacteria mainly contributed to organic degradation and that aggregation created some anaerobic environment, which promoted the growth of bacterial communities usually not found in well-functioning FBC reactors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Altschul SF, Gish W, Miller W et al (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    PubMed  CAS  Google Scholar 

  2. Ashelford KE, Chuzhanova NA, Fry JC et al (2005) At least 1 in 20 16S rRNA sequence records currently held in public repositories is estimated to contain substantial anomalies. Appl Environ Microbiol 71:7724–7736

    Article  PubMed  CAS  Google Scholar 

  3. Collins MD, Williams AM, Wallbanks S (1990) The phylogeny of Aerococcus and Pediococcus as determined by 16S rRNA sequence analysis: Description of Tetragenococcus gen. nov. FEMS Microbiol Lett 70:255–262

    Article  CAS  Google Scholar 

  4. Collins MD, Wiernik A, Falsen E et al (2005) Atopococcus tabaci gen. nov., sp. nov., a novel Gram-positive, catalase-negative, coccus-shaped bacterium isolated from tobacco. Int J Syst Evol Microbiol 55:1693–1696

    Article  PubMed  CAS  Google Scholar 

  5. Cotta MA, Whitehead TR, Collins MD et al (2004) Atopostipes suicloacale gen. nov., sp. nov., isolated from an underground swine manure storage pit. Anaerobe 10:191–195

    Article  PubMed  CAS  Google Scholar 

  6. Dees P, Ghiorse W (2001) Microbial diversity in hot synthetic compost as revealed by PCR-amplified rRNA sequences from cultivated isolates and extracted DNA. FEMS Microbiol Ecol 35:207–216

    Article  PubMed  CAS  Google Scholar 

  7. Demharter W, Hensel R (1989) Bacillus thermocloacae sp. nov., a new thermophilic species from sewage sludge. Syst Appl Microbiol 11:272–276

    Google Scholar 

  8. Felsenstein J (1993) PHYLIP (Phylogeny Inference Package) version 3.5c. Distributed by the author, Department of Genetics, University of Washington

  9. Haruta S, Kondo M, Nakamura K et al (2002) Microbial community changes during organic solid waste treatment analyzed by double gradient-denaturing gradient gel electrophoresis and fluorescence in situ hybridization. Appl Microbiol Biotechnol 60:224–231

    Article  PubMed  CAS  Google Scholar 

  10. Haruta S, Kondo M, Nakamura K et al (2004) Succession of a microbial community during stable operation of semi-continuous garbage-decomposing system. J Biosci Bioeng 98:20–27

    PubMed  CAS  Google Scholar 

  11. Hoyles M, Collins MD, Foster G et al (2004) Jeotogalicoccus pinnipedialis sp. nov., from a southern elephant seal (Mirounga leonina). Int J Syst Evol Microbiol 54:745–748

    Article  PubMed  CAS  Google Scholar 

  12. Kurisu F, Satoh S, Mino T et al (2002) Microbial community analysis of thermophilic contact oxidation process by using ribosomal RNA approaches and the quinone profile method. Water Res 36:429–438

    Article  PubMed  CAS  Google Scholar 

  13. Kurosawa N, Itoh YH, Itoh T (2005) Thermus kawarayensis sp. nov., a new member of the genus Thermus, isolated from Japanese hot springs. Extremophiles 9:81–84

    Article  PubMed  Google Scholar 

  14. Madigan MT, Martinko JM, Parker J et al (2000) Brock biology of microorganisms, 9th ed. New Jersey, Prentice-Hall

    Google Scholar 

  15. Maidak BL, Cole JR, Lilburn TG et al (2001) The RDP-II (Ribosomal Database Project). Nucleic Acids Res 29:173–174

    Article  PubMed  CAS  Google Scholar 

  16. Nakamura K, Haruta S, Ueno S et al (2004) Cerasibacillus quisquiliarum gen. nov., sp. nov., isolated from a semi-continuous decomposing system of kitchen refuse. Int J Syst Evol Microbiol 54:1063–1069

    Article  PubMed  CAS  Google Scholar 

  17. Nakamura K, Haruta S, Nguyen HL et al (2004) Enzyme production-based approach for determining the functions of microorganisms within a community. Appl Environ Microbiol 70:3329–3337

    Article  PubMed  CAS  Google Scholar 

  18. Nagao N, Matsuyama T, Yamamoto H et al (2003) A novel hybrid system of solid state and submerged fermentation with recycle for organic solid waste treatment. Process Biochem 39:37–43

    Article  CAS  Google Scholar 

  19. Nagao N, Osa S, Matsuyama T et al (2005) Optimization of washing rate in a hybrid recycling system of solid state and submerged fermentation. Process Biochem 40:3321–3326

    Article  CAS  Google Scholar 

  20. Narihiro T, Yamanaka Y, Hiraishi A (2003) High culturability of bacteria in commercially available personal composters for fed-batch treatment of household biowaste. Microbes Environ 18:94–99

    Article  Google Scholar 

  21. Narihiro T, Takebayashi S, Hiraishi A (2004) Activity and phylogenetic composition of proteolytic bacteria in mesophilic fed-batch garbage composters. Microbes Environ 19:292–300

    Article  Google Scholar 

  22. Narihiro T, Abe T, Yamanaka Y et al (2004) Microbial population dynamics during fed-batch operation of commercially available garbage composters. Appl Microbial Biotechnol 65:488–495

    Article  CAS  Google Scholar 

  23. Narihiro T, Hiraishi A (2005) Microbiology of fed-batch composting. Microbes Environ 20:1–13

    Article  Google Scholar 

  24. Pedro MS, Haruta S, Nakamura K et al (2003) Isolation and characterization of predominant microorganisms during decomposition of waste materials in a field-scale composter. J Biosci Bioeng 95:368–373

    PubMed  CAS  Google Scholar 

  25. Pikuta E, Lysenko A, Chuvilskaya N et al (2000) Anoxybacillus pushchinensis gen. nov., sp. nov., a novel aerobic, alkaliphilic, moderately thermophilic bacterium from manure, and description of Anoxybacillus flavithermus comb. nov. Int J Syst Evol Microbiol 50:2109–2117

    PubMed  CAS  Google Scholar 

  26. Ryckeboer J, Mergaert J, Coosemans J et al (2003) Microbiological aspects of biowaste during composting in a monitored compost bin. J Appl Microbiol 94:127–137

    Article  PubMed  CAS  Google Scholar 

  27. Saitou N, Nei M. (1987) The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    PubMed  CAS  Google Scholar 

  28. Shibata A, Goto Y, Nakajima R (2006) Use of SYBR gold stain for enumerating bacteria and viruses in seawater samples [in Japanese]. Bull Plankton Soc Japan 53:64–68

    Google Scholar 

  29. Singleton DR, Furlong MA, Rathbun SL et al (2001) Quantitative comparisons of 16S rRNA gene sequence libraries from environmental samples. Appl Environ Microbiol 67:4374–4376

    Article  PubMed  CAS  Google Scholar 

  30. Strom PF (1985) Identification of thermophilic bacteria in solid-waste composting. Appl Environ Microbiol 50:906–913

    PubMed  CAS  Google Scholar 

  31. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  PubMed  CAS  Google Scholar 

  32. Waino M, Tindall BJ, Schumann P et al (1999) Gracilibacillus gen. nov., with description of Gracilibacillus halotolerans gen. nov., sp. nov.; transfer of Bacillus dipsosauri to Gracilibacillus dipsosauri comb. nov., and Bacillus salexigens to the genus Salibacillus gen. nov., as Salibacillus salexigens comb. nov. Int J Syst Bacteriol 49:821–831

    Article  PubMed  CAS  Google Scholar 

  33. Wang Q, Garrity GM, Tiedje JM et al (2007) Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73:5261–5267

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by University-Industry Joint Research Project for Private Universities and a matching fund subsidy from the Ministry of Education, Culture, Sports, Science and Technology-Japan, 2004-2008. We thank S. Osa for technical assistance, L. Y. Giak, and T. Yoshida for correcting English in the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keiko Watanabe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Watanabe, K., Nagao, N., Toda, T. et al. Changes in Bacterial Communities Accompanied by Aggregation in a Fed-Batch Composting Reactor. Curr Microbiol 56, 458–467 (2008). https://doi.org/10.1007/s00284-008-9107-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-008-9107-y

Keywords

Navigation