Skip to main content
Log in

Purification and Identification of a Novel Leucine Aminopeptidase from Bacillus thuringiensis israelensis

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

A novel leucine aminopeptidase was purified from a Bacillus thuringiensis israelensis (Bti) culture. The purification stages included heating the concentrated supernatant to 65°C for 90 min, anion-exchange chromatography by DEAE cellulose, and hydrophobic chromatography by phenyl Sepharose. The specific activity of leucine aminopeptidase after the hydrophobic chromatography increased by 215.5-fold and the yield was 16%. The molecular weight of the active enzyme was 59 kDa. Mass spectrometry analysis of the 59-kDa leucine aminopeptidase revealed that this protein has at least 41% homology with the cytosol leucine aminopeptidase produced by Bacillus cereus. Maximal leucine aminopeptidase activity occurred at 65°C, pH 10 toward leucine as the amino acid terminus. The enzyme was strongly inhibited by bestatin, dithiothreitol, and 1,10-phenanthroline, indicating that the enzyme might be considered as a metallo-aminopeptidase that has disulfide bonds at the catalytic site or at a region that influences its configuration. Examination of the purified leucine aminopeptidase’s effect on the activation of the protoxin Cyt1Aa from Bti revealed that when it acts synergistically with Bti endogenous proteases, it has only a minor role in the processing of Cyt1Aa into an active toxin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Adams LF, Visick JE, Whiteley HR (1989) A 20-kilodalton protein is required for efficient production of the Bacillus thuringiensis subsp. israelensis 27-kilodalton crystal protein in Escherichia coli. J Bacteriol 171:521–530

    PubMed  CAS  Google Scholar 

  2. Al-yahyaee SAS, Ellar DJ (1995) Maximal toxicity of cloned CytA δ-endotoxin from Bacillus thuringiensis subsp. israelensis requires proteolytic processing from both the N- and C-termini. Microbiology 141:3141–3148

    Article  CAS  Google Scholar 

  3. Andrews RE Jr, Bibilos MM, Bulla LA Jr (1985) Protease activation of the entomocidal protoxin of Bacillus thuringiensis subsp. kurstaki. Appl Environ Microbiol 50:737–742

    PubMed  CAS  Google Scholar 

  4. Bibilos M, Andrews RE Jr (1988) Inhibition of Bacillus thuringiensis proteases and their effects on crystal toxin proteins and cell-free translations. Can J Microbiol 34:740–747

    Article  CAS  Google Scholar 

  5. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  6. Cahan R, Axelrad I, Safrin M, Ohman DE, Kessler E (2001) A secreted aminopeptidase of Pseudomonas aeruginosa. Identification, primary structure, and relationship to other aminopeptidases. J Biol Chem 276:43,645–43,652

    Article  Google Scholar 

  7. Chen G, Edwards T, D’souza VM, Holz RC (1997) Mechanistic studies on the aminopeptidase from Aeromonas proteolytica: a two-metal ion mechanism for peptide hydrolysis. Biochemistry 36:4278–4286

    Article  PubMed  CAS  Google Scholar 

  8. Chi MC, Chou WM, Hsu WH, Lin LL (2004) Identification of amino acid residues essential for the catalytic reaction of Bacillus kaustophilus leucine aminopeptidase. Biosci Biotechnol Biochem 68:1794–1797

    Article  PubMed  CAS  Google Scholar 

  9. Chilcott CN, Ellar DJ (1988) Comparative toxicity of Bacillus thuringiensis var. israelensis crystal proteins in vivo and in vitro. J Gen Microbiol 134:2551–2558

    PubMed  CAS  Google Scholar 

  10. Dai SM, Gill SS (1993) In vitro and in vivo proteolysis of the Bacillus thuringiensis subsp. israelensis CryIVD protein by Culex quinquefasciatus larval midgut proteases. Insect Biochem Mol Biol 23:273–283

    Article  PubMed  CAS  Google Scholar 

  11. Debro L, Fitz-James PC, Aronson A (1986) Two different parasporal inclusions are produced by Bacillus thuringiensis subsp. finitimus. J Bacteriol 165:258–268

    CAS  Google Scholar 

  12. Donovan WP, Tan Y, Slaney AC (1997) Cloning of the nprA gene for neutral protease A of Bacillus thuringiensis and effect of in vivo deletion of nprA on insecticidal crystal protein. Appl Environ Microbiol 63:2311–2317

    PubMed  CAS  Google Scholar 

  13. Gill SS, Cowles EA, Pietrantonio PV (1992) The mode of action of Bacillus thuringiensis endotoxins. Annu Rev Entomol 37:615–636

    Article  PubMed  CAS  Google Scholar 

  14. Gonzales T, Robert-Baudouy J (1996) Bacterial aminopeptidases: properties and functions. FEMS Microbiol Rev 18:319–344

    Article  PubMed  CAS  Google Scholar 

  15. Gottesman S, Maurizi MR (1992) Regulation by proteolysis: energy-dependent proteases and their targets. Microbiol Rev 56:592–621

    PubMed  CAS  Google Scholar 

  16. Helgason E, Okstad OA, Caugant DA, Johansen HA, Fouet A, Mock M, Hegna I, Kolsto AB (2000) Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis: one species on the basis of genetic evidence. Appl Environ Microbiol 66:2627–2630

    Article  PubMed  CAS  Google Scholar 

  17. Kok J (1990) Genetics of the proteolytic system of lactic acid bacteria. FEMS Microbiol Rev 7:15–42

    PubMed  CAS  Google Scholar 

  18. Kumar NS, Venkateswerlu G (1997) Involvement of an endogenous metalloprotease in the activation of protoxin in Bacillus thuringiensis subsp. kurstaki. Biochem Mol Biol Int 42:901–908

    PubMed  CAS  Google Scholar 

  19. Manasherob R, Zaritsky A, Metzler Y, Ben-Dov E, Itsko M, Fishov I (2003) Compaction of the Escherichia coli nucleoid caused by Cyt1Aa. Microbiology 149:3553–3564

    Article  PubMed  CAS  Google Scholar 

  20. Margalith Y, Ben-Dov E (2000) Biological control by Bacillus thuringiesis subsp. israelensis. In: Rechcigl JE, Rechcigl NA (eds) Insect pest management: techniques for environmental protection. CRC Press, Boca Raton, FL, pp 243–301

    Google Scholar 

  21. Miller CG, Strauch KL, Kukral AM, Miller JL, Wingfield PT, Mazzei GJ, Werlen RC, Graber P, Movva NR (1987) N-terminal methionine-specific peptidase in Salmonella typhimurium. Proc Natl Acad Sci USA 84:2718–2722

    Article  PubMed  CAS  Google Scholar 

  22. Nisnevitch M, Cohen S, Ben-Dov E, Zaritsky A, Sofer Y, Cahan R (2006) Cyt2Ba of Bacillus thuringiensis israelensis: activation by putative endogenous protease. Biochem Biophys Res Commun 344:99–105

    Article  PubMed  CAS  Google Scholar 

  23. Niven GW (1991) Purification and characterization of aminopeptidase A from Lactococcus lactis subsp. lactis NCDO-712. J Gen Microbiol 137:1207–1212

    CAS  Google Scholar 

  24. Oppert B (1999) Protease interactions with Bacillus thuringiensis insecticidal toxins. Arch Insect Biochem Physiol 42:1–12

    Article  PubMed  CAS  Google Scholar 

  25. Prestidge L, Gage V, Spizizen J (1971) Protease activities during the course of sporulation on Bacillus subtilis. J Bacteriol 107:815–823

    PubMed  CAS  Google Scholar 

  26. Reddy ST, Kumar NS, Venkateswerlu G (1998) Comparative analysis of intracellular proteases in sporulated Bacillus thuringiensis strains. Biotechnol Lett 20:279–281

    Article  CAS  Google Scholar 

  27. Taylor A (1993) Aminopeptidases: structure and function. FASEB J 7:290–298

    PubMed  CAS  Google Scholar 

  28. Taylor A (1993) Aminopeptidases: towards a mechanism of action. Trends Biochem Sci 18:167–171

    PubMed  CAS  Google Scholar 

  29. Thomas TD, Pritchard GG (1987) Proteolytic enzymes of dairy starter cultures. FEMS Microbiol Rev 46:245–268

    Article  CAS  Google Scholar 

  30. Valaitis AP (1995) Gypsy moth midgut proteinases: purification and characterization of luminal trypsin, elastase and the brush border membrane leucine aminopeptidase. Insect Biochem Mol Biol 25:139–149

    Article  PubMed  CAS  Google Scholar 

  31. Vitale LJ, Renko M, Lenarcic B, Turk V, Pokorny M (1986) Streptomyces rimosus extracellular proteases 3. Isolation and characterization of Leucine aminopeptidase. Appl Microbiol Biotechnol 23:449–455

    Article  CAS  Google Scholar 

  32. Yen C, Green L, Miller CG (1980) Peptide accumulation during growth of peptidase deficient mutants. J Mol Biol 143:35–48

    Article  PubMed  CAS  Google Scholar 

  33. Yoshpe-Besancon I, Auriol D, Paul F, Monsan P, Gripon JC, Ribadeau-Dumas B (1993) Purification and characterization of an aminopeptidase A from Staphylococcus chromogenes and its use for the synthesis of amino-acid derivatives and dipeptides. Eur J Biochem 211:105–110

    Article  PubMed  CAS  Google Scholar 

  34. Zhang ZZ, Nirasawa S, Nakajima Y, Yoshida M, Kusakabe I, Hayashi K (2001) Characterization of the pro-aminopeptidase from Aeromonas caviae T-64. Biosci Biotechnol Biochem 65:420–423

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Hen Friman, Hadas Friman, Sasi Sigawi, and Yafit Sigawi, students of the Department of Chemical Engineering and Biotechnology at the College of Judea and Samaria, for assistance with this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rivka Cahan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cahan, R., Hetzroni, E., Nisnevitch, M. et al. Purification and Identification of a Novel Leucine Aminopeptidase from Bacillus thuringiensis israelensis . Curr Microbiol 55, 413–419 (2007). https://doi.org/10.1007/s00284-007-9004-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-007-9004-9

Keywords

Navigation