Skip to main content
Log in

Intracellular Aminopeptidase Activity Determination from the Fungus Sporisorium reilianum: Purification and Biochemical Characterization of psrAPEi Enzyme

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

The aims of this study were to, first, determine the intracellular aminopeptidase activity (APEi) and second, purify and biochemically characterize one intracellular aminopeptidase enzyme from the phytopathogen fungus Sporisorium reilianum (psrAPEi), the causal agent of head smut in corn. The fungus produced APEi activity in all media cultures evaluated. The psrAPEi was purified by a procedure that involved ammonium sulfate fractionation and four chromatographic steps using an FPLC system (Fast Protein Liquid Chromatography). Results showed an estimated molecular mass of 52.2 kDa. Enzymatic activity was optimal at pH 7.0 and 35 °C and was inhibited by EDTA-Na2, 1,10-phenanthroline, bestatin, and PMSF. This aminopeptidase showed a preference for leucine, arginine, and lysine at the N-position. The Km and Vmax values were 3.72 μM and 188.0 μmol/min, respectively, for l-lysyl-4-nitroanilide. This is the first study to report on intracellular aminopeptidase activity in S. reilianum and the purification and characterization of an intracellular metallo-serine-aminopeptidase (psrAPEi).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hecht KA, O’Donnell AF, Brodsky JL (2014) The proteolytic landscape of the yeast vacuole. Cell Logist 4:e28023. https://doi.org/10.4161/cl.28023

    Article  PubMed  PubMed Central  Google Scholar 

  2. Hilt W, Wolf DH (1995) Proteasomes of the yeast Saccharomyces cerevisiae: genes, structure and functions. Mol Biol Rep 21:3–10. https://doi.org/10.1007/BF00990964

    Article  CAS  PubMed  Google Scholar 

  3. Hirsch HH, Suárez-Rendueles P, Wolf DH (1989) Yeast (Saccharomyces cerevisiae) proteinases: structure, characteristics and functions. In: Walton EF, Yarranton GT (eds) The molecular and cell biology of yeasts. Blackie & Sons Ltd, London, pp 134–200

    Google Scholar 

  4. Kisselev AF, Acopian TN, Woo KM, Goldberg AL (1999) The sizes of peptides generated from protein by mammalian 26 and 20S proteasomes. Implication for understanding the degradative mechanism and antigen presentation. J Biol Chem 274:3363–3371. https://doi.org/10.1074/jbc.274.6.3363

    Article  CAS  PubMed  Google Scholar 

  5. Kudriaeva AA, Sokolov AV, Belogurov AAJ (2020) Stochastics of degradation: the autophagic-lysosomal system of the cell. Acta Nat 12:18–32. https://doi.org/10.32607/actanaturae.10936

    Article  CAS  Google Scholar 

  6. Suárez-Rendueles P, Wolf DH (1988) Proteinase function in yeast: biochemical and genetic approaches to a central mechanism of post-translational control in the eukariotic cell. FEMS Microbiol Lett 54:17–46. https://doi.org/10.1111/j.1574-6968.1988.tb02706.x-i1

    Article  Google Scholar 

  7. Taylor A (1993) Aminopeptidases: structure and functions. FASEB J 7:290–298

    Article  CAS  PubMed  Google Scholar 

  8. Tomko RJ, Hochstrasser M (2013) Molecular architecture and assembly of the eukaryotic proteasome. Annu Rev Biochem 82:415–445. https://doi.org/10.1146/annurev-biochem-060410-150257

    Article  CAS  PubMed  Google Scholar 

  9. Basten DEJW, Visser J, Schaap J (2001) Lysine aminopeptidase of Aspergillus niger. Microbiology 147:2045–2050. https://doi.org/10.1099/00221287-147-8-2045

    Article  CAS  PubMed  Google Scholar 

  10. Bolumar T, Sanz YS, Aristoy MC, Toldra F (2003) Purification and characterization of a prolyl aminopeptidase from Debarymyces hansenii. Appl Environ Microbiol 69:227–232. https://doi.org/10.1128/AEM.69.1.227-232.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hernández-Montañez Z, Araujo-Osorio J, Noriega-Reyes Y, Chávez-Camarillo G, Villa-Tanaca L (2007) The intracellular proteolytic system of Yarrowia lipolytica and characterization of an aminopeptidase. FEMS Microbiol Lett 268:178–186. https://doi.org/10.1111/j.1574-6968.2006.00578.x

    Article  CAS  PubMed  Google Scholar 

  12. Herrera CI, Rosas MN, Rojo DA, Millán L, Reyes-Leyva J, Santos-López G, Suárez-Rendueles P (2007) Biochemical characterization and structural prediction of a novel cytosolic leucy aminoeptidase of the M17 family from Schizosaccharomyces pombe. FEBS J 274:6228–6240. https://doi.org/10.1111/j.1742-4658.2007.06142.x

    Article  CAS  Google Scholar 

  13. Herrera-Camacho I, Morales-Monterrosas R, Quiróz-Álvarez R (2000) Aminopeptidase yscCo-II: a new cobalt-dependent aminopeptidase from yeast-purification and biochemical characterization. Yeast 16:219–229. https://doi.org/10.1002/(SICI)1097-0061(200002)16:3%3c219::AID-YEA523%3e3.0.CO;2-J

    Article  CAS  PubMed  Google Scholar 

  14. Sanz Y (2007) Aminopeptidases. In: Polaina J, MacCabe AP (eds) Industrial enzymes. Springer, Heidelberg, pp 243–260

    Chapter  Google Scholar 

  15. Sriram N, Priyadharshini M, Sivasakthi S (2012) Production and characterization of amino peptidase from marine Aspergillus flavus. Int J Microbiol Res 3:221–226

    CAS  Google Scholar 

  16. Achstetter T, Ehmann C, Wolf DH (1982) Aminopeptidase Co, a new yeast peptidase. Biochem Biophys Res Commun 109:341–347. https://doi.org/10.1016/0006-291x(82)91726-0

    Article  CAS  PubMed  Google Scholar 

  17. Caprioglio DR, Padilla C, Werner-Washburne M (1993) Isolation and characterization of AAPI; a gene encoding an alaline/arginine aminopeptidase in yeast. J Biol Chem 268:14310–14315

    Article  CAS  PubMed  Google Scholar 

  18. Hirsch HH, Suárez-Rendueles P, Achstetter T, Wolf DH (1988) Aminopeptidase yscII of yeast. Isolation of mutants and their biochemical and genetic analysis. Eur J Biochem 173:589–598. https://doi.org/10.1111/j.1432-1033.1988.tb14040.x

    Article  CAS  PubMed  Google Scholar 

  19. Li H, Chang YH (1995) Amino-terminal protein processing in Saccharomyces cerevisae is an essential function that requires two distinct methionine aminopeptidases. Proc Natl Acad Sci USA 92:12357–12361. https://doi.org/10.1073/pnas.92.26.12357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lynch-Day MA, Klionsky DJ (2010) The Cvt pathway as a model for selective autophagy. FEBS Lett 584:1359–1366. https://doi.org/10.1016/j.febslet.2010.02.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Natarajan K, Meyer MR, Jackson BM, Slade D, Roberts C, Hinnebusch AG, Marton MJ (2001) Transcriptional profiling shows that Gcn4p is a master regulator of gene expression during amino acid starvation in yeast. Mol Cell Biol 21:4347–4368. https://doi.org/10.1128/MCB.21.13.4347-4368.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Porras-Agüera JA, Moreno-García J, González-Jiménez MDC, Mauricio JC, Moreno J, García-Martínez T (2020) Autophagic proteome in two Saccharomyces cerevisiae strains during second fermentation for sparkling wine elaboration. Microorganisms 8:523. https://doi.org/10.3390/microorganisms8040523

    Article  CAS  PubMed Central  Google Scholar 

  23. Scott SV, Baba M, Ohsumi Y, Klionsky DJ (1997) Aminopeptidase I is targeted to the vacuole by a nonclassical vesicular mechanism. J Cell Biol 138:37–44. https://doi.org/10.1083/jcb.138.1.37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Schu P (2008) Aminopeptidase I enzymatic activity. Methods Enzymol 451:67–78. https://doi.org/10.1016/S0076-6879(08)03206-0

    Article  CAS  PubMed  Google Scholar 

  25. Abdus SAK, Yoshimoto T, Tsuru D (1989) Lyophyllum cinerascens aminopeptidase: purification and enzymatic properties. Arch Biochem Biophys 274:241–250. https://doi.org/10.1016/0003-9861(89)90436-0

    Article  Google Scholar 

  26. Caporale C, Garzillo AM, Caruso C, Buonocore V (1996) Characterization of extracellular protease from Trametes trogii. Phytochemistry 41:385–393. https://doi.org/10.1016/0031-9422(96)83284-5

    Article  CAS  PubMed  Google Scholar 

  27. Ishizaki T, Tosaka A, Nara T, Aoshima N, Namekawa S, Watanabe K, Hamada F, Omori A, Sakaguchi K (2002) Leucine aminopeptidase during meiotic development. Eur J Biochem 269:826–832. https://doi.org/10.1046/j.0014-2956.2001.02713.x

    Article  CAS  PubMed  Google Scholar 

  28. Mercado-Flores Y, Hernández-Rodríguez C, Ruíz-Herrera J, Villa-Tanaca L (2003) Proteinases and exopeptidases from the phytopathogenic fungus Ustilago maydis. Mycologia 95:327–339

    Article  CAS  PubMed  Google Scholar 

  29. Mercado-Flores Y, Noriega-Reyes Y, Ramírez-Zavala B, Hernández-Rodríguez C, Villa-Tanaca L (2004) Purification and characterization of aminopeptidase (pumAPE) from Ustilago maydis. FEMS Microbiol Lett 234:247–253. https://doi.org/10.1111/j.1574-6968.2004.tb09540.x

    Article  CAS  PubMed  Google Scholar 

  30. Nishiwaki T, Hayashi K (2001) Purification and characterization of an aminopeptidase from the edible basidiomycete Grifola frondosa. Biosci Biotechnol Biochem 65:424–427. https://doi.org/10.1271/bbb.65.424

    Article  CAS  PubMed  Google Scholar 

  31. Álvarez-Cervantes J, Hernández-Domínguez EM, Tellez-Tellez M, Mandujano-González V, Mercado-Flores Y, Díaz-Godinez G (2016) Stenocarpella maydis and Sporisorium reilianum: two pathogenic fungi of maize. In: Sultan S (ed) Fungal pathogenicity. INTECH, Croatia, pp 45–60. https://doi.org/10.5772/62662

    Chapter  Google Scholar 

  32. Ghareeb H, Becker A, Iven T, Feussner I, Schirawski J (2011) Sporisorium reilianum infection changes inflorescence and branching architectures of maize. Plant Physiol 156:2037–2052. https://doi.org/10.1104/pp.111.179499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Martinez C, Roux C, Jauneau A, Dargent R (2002) The biological cycle of Sporisorium reilianum f.sp. zeae: an overview using microscopy. Mycologia 94:505–514. https://doi.org/10.1080/15572536.2003.11833215

    Article  PubMed  Google Scholar 

  34. Matyac CA, Kommedahl T (1985) Factors affecting the development of head smut caused by Sphacelotheca reiliana on corn. Phytopathology 75:577–581. https://doi.org/10.1094/Phyto-75-577

    Article  Google Scholar 

  35. Mercado-Flores Y, Cárdenas-Álvarez IO, Rojas-Olvera AV, Pérez-Camarillo JP, Leyva-Mir SG, Anducho-Reyes MA (2014) Application of Bacillus subtilis in the biological control of the phytopathogenic fungus Sporisorium reilianum. Biol Control 76:36–40. https://doi.org/10.1016/j.biocontrol.2014.04.011

    Article  Google Scholar 

  36. Nan W, Zhao F, Zhang C, Ju H, Lu W (2020) Promotion of compound K production in Saccharomyces cerevisiae by glycerol. Microb Cell Fact 19:41. https://doi.org/10.1186/s12934-020-01306-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Bradford M (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. https://doi.org/10.1006/abio.1976.9999

    Article  CAS  PubMed  Google Scholar 

  38. Dmitriy AV, Nowak T (1998) pH dependence of the reaction catalyzed by yeast Mg-enolase. Biochemistry 37:15238–15246. https://doi.org/10.1021/bi981047o

    Article  Google Scholar 

  39. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685. https://doi.org/10.1038/227680a0

    Article  CAS  PubMed  Google Scholar 

  40. Soberanes-Gutiérrez CV, Juárez-Montiel M, Olguín-Rodríguez O, Hernández-Rodríguez C, Ruiz-Herrera J, Villa-Tanaca L (2015) The pep4 gene encoding proteinase A is involved in dimorphism and pathogenesis of Ustilago maydis. Mol Plant Pathol 16:837–846. https://doi.org/10.1111/mpp.12240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ghareeb H, Zhao Y, Schirawski J (2019) Sporisorium reilianum possesses a pool of effector proteins that modulate virulence on maize. Mol Plant Pathol 20:124–136. https://doi.org/10.1111/mpp.12744

    Article  CAS  PubMed  Google Scholar 

  42. Schirawski J, Mannhaupt G, Münch K, Brefort T, Schipper K, Doehlemann G, Di Stasio M, Rössel N, Mendoza-Mendoza A, Pester D, Müller O, Winterberg B, Meyer E, Ghareeb H, Wollenberg T, Münsterkötter M, Wong P, Walter M, Stukenbrock E, Güldener U, Kahmann R (2010) Pathogenicity determinants in smut fungi revealed by genome comparison. Science 330:1546–1548. https://doi.org/10.1126/science.1195330

    Article  CAS  PubMed  Google Scholar 

  43. Metz G, Röhm KH (1976) Yeast aminopeptidase I. Chemical composition and catalytic properties. Biochim Biophys Acta 429:933–949. https://doi.org/10.1016/0005-2744(76)90338-7

    Article  CAS  PubMed  Google Scholar 

  44. Wösten HAB, Bohlmann R, Eckerskorn C, Lottspeich F, Bölker M, Kahmann R (1996) A novel class of small amphipathic affect aerial hyphal growth and surface hydrophobicity in Ustilago maydis. EMBO J 15:4274–4281. https://doi.org/10.1002/j.1460-2075.1996.tb00802.x

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank to the CONACyT for the scholarship given to Joany Pérez-Rodríguez.

Funding

This work was supported by the Fondo de Ciencia Básica SEP-CONACyT (Project No. 167459).

Author information

Authors and Affiliations

Authors

Contributions

JPR performed the experiments and the analysis of the data. ATJ assisted in methodology and helped in the analysis of the data. LVT assisted in methodology and helped in the analysis of the data. CAGA helped to determine the thermal properties of the purified enzyme. YMF performed investigation, analysis of the data, project administration, and writing and reviewing of the manuscript. All authors have read the manuscript and their contributions are equal.

Corresponding author

Correspondence to Yuridia Mercado-Flores.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this work.

Ethical Approval

In this work neither animal was used to the experimental development. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pérez-Rodríguez, J., Téllez-Jurado, A., Villa-Tanaca, L. et al. Intracellular Aminopeptidase Activity Determination from the Fungus Sporisorium reilianum: Purification and Biochemical Characterization of psrAPEi Enzyme. Curr Microbiol 79, 90 (2022). https://doi.org/10.1007/s00284-022-02787-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00284-022-02787-8

Navigation