Skip to main content
Log in

Isolation and Identification of an Endophytic Strain EJS-3 Producing Novel Fibrinolytic Enzymes

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

An endophytic strain EJS-3, which produces a novel fibrinolytic enzyme, was screened from root tissue of Stemona japonica (Blume) Miq, a chinese traditional medicine. This strain was identified as Paenibacillus polymyxa (DQ120522) by morphological, physiological, and biochemical tests and 16S rRNA gene sequence analysis. Two serine-type fibrinolytic enzymes with a relative molecular weight about 118 and 49 kDa, respectively, which are larger than known fibrinolytic enzymes, were found by the SDS–fibrin zymogram or by fibrin-inhibitor zymography gels. No work on P. polymyxa-producing fibrinolytic enzymes has been reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

Literature Cited

  1. Astrup T, Mullertz S (1952) The fibrin plate method for estimating fibrinolytic activity. Arch Biochem Biophys 40:346–351

    Article  PubMed  CAS  Google Scholar 

  2. Batomunkueva BP, Egorov NS (2001) Isolation, purification and resolution of the extracellular proteinase complex of Aspergillus ochraceus 513 with fibrinolytic and anticoagulant activities. Microbiology 70(5):519–522

    Article  CAS  Google Scholar 

  3. Chang CT, Fan MH, Kuo FC, Sung HY (2000) Potent fibrinolytic enzyme from amutant of Bacillus subtilis IMR-NK1. J Agric Food Chem 48(8):3210–3216

    Article  PubMed  CAS  Google Scholar 

  4. Chitte RR, Dey S (2000) Potent fibrinolytic enzyme from a thermophilic Streptomyces megasporus strain SD5. Lett Appl Microbiol 31(6):405–410

    Article  PubMed  CAS  Google Scholar 

  5. Choi NS, Kim SH (1999) Application of fibrin zymography for determining the optimum culture time for protease activity. Biotechnol Tech 13:899–901

    Article  CAS  Google Scholar 

  6. Choi NS, Kim SH (2000) Two fibrin zymography methods for analysis of plasminogen activators on gels. Anal. Biochem 281:236–238

    Article  PubMed  CAS  Google Scholar 

  7. El-Aassar SA, El-Badry HM, Abdel-Fattah AF (1990) The biosynthesis of proteases with fibrinolytic activity in immobilized cultures of Penicillium chrysogenum H9. Appl Microbiol Biotechnol 33(1):26–30

    Article  PubMed  CAS  Google Scholar 

  8. Fujita M, Nomura K, Hong K, Ito Y, Asada A, Nishimuro S (1993) Purification and characterization of a strong fibrinolytic enzyme (nattokinase) in the vegetable cheese natto, a popular soybean fermented food in Japan. Biochem Biophys Res Commun 197(3):1340–1347

    Article  PubMed  CAS  Google Scholar 

  9. Gary Strobel A (2003) Endophytes as sources of bioactive products. Microbes Infect 5(6):535–544

    Article  PubMed  CAS  Google Scholar 

  10. Goldhaber SZ, Bounameaux H (2001) Thrombolytic therapy in pulmonary embolism. Semin Vasc Med 1(2):213–220

    Article  PubMed  CAS  Google Scholar 

  11. Holt JG, Krieg NR, Sneath PHA, Staley JT, Williams ST (1994) Bergey’s manual of determinative bacteriology, 9th ed. The Williams & Wilkins Co., Baltimore

    Google Scholar 

  12. Juho K (2002) Identification of a novel gene palk encoded a unique fibrinolytic enzyme larvakinase from Paenibacillus larvae QK02. Available from http://www.br.expasy.org/uniprot/Q8GBY0

  13. Kim HK, Kim GT, Kim DK, Choi WA, Park SH, Jeong YK, Kong IS (1997) Purification and characterization of a novel fibrinolytic enzyme from Bacillus sp. KA38 originated from fermented fish. J. Ferment Bioeng 84(4):307–312

    Article  CAS  Google Scholar 

  14. Kim SB, Lee DW, Cheigh CI (2006) Purification and characterization of a fibrinolytic subtilisin-like protease of Bacillus subtilis TP-6 from an Indonesian fermented soybean, Tempeh. J Indian Microbiol Biotechnol 33:436–444

    Article  CAS  Google Scholar 

  15. Kim SH, Choi NS (2000) Purification and characterization of subtilisin DJ-4 secreted by Bacillus sp strain DJ-4 screened from Doen-Jang. Biosci Biotechnol Biochem 64:1722–1725

    Article  PubMed  CAS  Google Scholar 

  16. Kim SH, Choi NS, Lee WY (1998) Fibrin zymography: a direct analysis of fibrinolytic enzymes on gels. Anal Biochem 263:115–116

    Article  PubMed  CAS  Google Scholar 

  17. Kim SH, Choi NS (1999) Electrophoretic analysis of protease inhibitors in fibrin zymography. Anal Biochem 270:179–181

    Article  PubMed  CAS  Google Scholar 

  18. Kim W, Choi K, Kim Y, Park H, Choi J, Lee Y, Oh H, Kwon I, Lee S (1996) Purification and characterization of a fibrinolytic enzyme produced from Bacillus sp. strain CK 11-4 screened from Chungkook-Jang. Appl Environ Microbiol 62(7):2482–2488

    PubMed  CAS  Google Scholar 

  19. Ko JH, Yan JP, Zhu L, Qi YP (2004) Identification of two novel fibrinolytic enzymes from Bacillus subtilis QK02. Comp. Biochem Physiol C: Toxicol Pharmacol 137:65–74

    Article  CAS  Google Scholar 

  20. Lee SK, Bae DH, Kwon TJ, Lee SB, Lee HH, Park JH, Heo S, Johnson MG (2001) Purification and characterization of a fibrinolytic enzyme from Bacillus sp. KDO-13 isolated from soybean paste. J Microbiol Biotechnol 11(5):845–852

    CAS  Google Scholar 

  21. Luk’ianchuk VV, Reva ON, Polishchuk LV (2002) Endophytic bacilli: producers of type II restriction endonucleases. Mikrobiologia 71(4):491–493

    CAS  Google Scholar 

  22. Manabu S, Miho T, Katsuichi S, Michiko T, Atsushi Y, Fusao T (2002) Endophytes as producers of xylanase. J Biosci Bioeng 93(1):88–90

    Google Scholar 

  23. Matsubara K, Sumi H, Hori K, Miyazawa K (1998) Purification and characterization of two fibrinolytic enzymes from a marine green alga, Codium intricatum. Comp Biochem Physiol Biochem Mol Biol 119:177–181

    Article  Google Scholar 

  24. Matsubara K, Hori K, Matsuura Y, Miyazawa K (1999) A fibrinolytic enzyme from a marine green alga, Codium latum. Phytochemistry 52(6):993–999

    Article  PubMed  CAS  Google Scholar 

  25. Matsubara K, Hori K, Matsuura Y, Miyazawa K (2000) Purification and characterization of a fibrinolytic enzyme and identification of fibrinogen clotting enzyme in a marine green alga, Codium divaricatum. Comp Biochem Physiol Biochem Mol Biol 125(1):137–143

    Article  CAS  Google Scholar 

  26. Medved LV, Solovjov DA, Ingham KC (1966) Domain structure, stability and interactions in streptokinase. Eur J Biochem 239:333–339

    Article  Google Scholar 

  27. Nakajima N, Taya N, Sumi H (1993) Potent fibrinolytic enzyme from the lysate of Katsuwonus pelamis digestive tract (shiokara): purification and characterization. Biosci Biotechnol Biochem 57:1604–1605

    Article  PubMed  CAS  Google Scholar 

  28. Peng Y, Huang Q, Zhang RH, Zhang YZ (2003) Purification and characterization of a fibrinolytic enzyme produced by Bacillus amyloliquefaciens DC-4 screened from douchi, a traditional Chinese soybean food. Comp Biochem Physiol Biochem Mol Biol 134:45–52

    Article  Google Scholar 

  29. Pennica D, Holmes WE, Kohr WJ, Harkins RN, Vehar GA,Ward CA, Bennett WF, Yelverton E, Seeburg PH, Heyne-ker HL, Goeddel DV, Collen D (1983) Cloning and expression of human tissue-type plasminogen activator cDNA in E. coli. Nature 301:214–221

    Article  PubMed  CAS  Google Scholar 

  30. Sambrook J, Frisch ER, Maniatis T (1989) Molecular cloning: A laboratory manual, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  31. Sasaki K, Moriyama S, Tanaka Y, Sumi H, Toki N, Robbins KC (1985) The transport of 125I-labeled human high molecular weight urokinase across the intestinal tract in a dog model with stimulation of ynthesis and/or release of plasminogen activators. Blood 66:69–75

    PubMed  CAS  Google Scholar 

  32. Schulz B, Sucker J, Aust HJ, Krohn K, Ludewig K, Jones PG, Doring D (1995) Biologically active secondary metabolites of endophytic Pezicula species. Mycol Res 99:1007–1015

    Article  CAS  Google Scholar 

  33. Sumi H, Hamada H, Tsushima H, Mihara H, Muraki H (1987) A novel fibrinolytic enzyme (nattokinase) in the vegetable cheese Natto; a typical and popular soybean food in the Japanese diet. Experientia 43(10):110–1111

    Article  Google Scholar 

  34. Sun T, Liu BH, Li P, Liu DM, Li ZH (1998) New solid-state fermentation process for repeated batch production of fibrinolytic enzyme by Fusarium oxysporum. Process Biochem 33(4):419–422

    Article  CAS  Google Scholar 

  35. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence weighing, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  PubMed  CAS  Google Scholar 

  36. Tough J (2005) Thrombolytic therapy in acute myocardial infarction. Nurs Stand 19(37):55–64

    PubMed  Google Scholar 

  37. Xiao-Lan L, Lian-Xiang D, Fu-Ping L, Xi-Qun Z, Jing X (2005) Purification and characterization of a novel fibrinolytic enzyme from Rhizopus chinensis 12. Appl Microbiol Biotechnol 67(2):209–214

    Article  PubMed  CAS  Google Scholar 

  38. Wun D, Voet JG (1982) Isolation and characterization of urokinase from human plasma. J Biol Chem 257:3276–3283

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaoxin Lu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, F., Sun, L., Lu, Z. et al. Isolation and Identification of an Endophytic Strain EJS-3 Producing Novel Fibrinolytic Enzymes. Curr Microbiol 54, 435–439 (2007). https://doi.org/10.1007/s00284-006-0591-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-006-0591-7

Keywords

Navigation